SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Hong Jaan)
 

Sökning: WFRF:(Hong Jaan) > Blood coagulation o...

Blood coagulation on electron beam melted implant surfaces, implications for bone growth

Ek, Rebecca, 1985- (författare)
Mittuniversitetet,Institutionen för teknik och hållbar utveckling (-2013)
Hong, Jaan (författare)
Uppsala University, Immunology, Genetics and Pathology
Dejanovic, Slavko (författare)
Mittuniversitetet,Institutionen för teknik och hållbar utveckling (-2013)
 (creator_code:org_t)
Dublin, 2011
2011
Engelska.
Ingår i: Proccedings of EBS 2011. - Dublin.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • INTRODUCTIONImplants for arthroplasty, plates and screws for orthopedics, maxillofacial and dentistry are more frequently being customised. Ti and CoCr alloys are common materials for bone implants. Surface roughness, porosity and choice of material may have an impact on the bone ingrowth. EBM (Electron Beam Melting) is a 3D-printing technique melting metallic powder layer by layer according to the corresponding CAD (Computer Aided Design) model of implants1.With EBM technology customised implants can be manufactured with a lower cost compared to conventional technologies2. Implants for bone replacement made from CT images with EBM technology will fit accurate and lead to simpler and better planed surgeries also3. The EBM technique, as such, is always resulting with rough surface on the implants (typically 20-45µm). That roughness can be controlled, in some extent, by changing the process parameters. Some authors claim that roughened surfaces are promoting bone ingrowth4.This work was aiming on the question: are EBM made surfaces good for bone ingrowth and is it possible to change the bone ingrowth by varying the machine settings? In order to answer this question a number of coin like specimens of CoCr were manufactured with the different surface roughness. The blood chamber model has shown how the first steps of bone healing were proceeding on specimen surfaces, indicating how the coagulation and complement systems can behave in vivo5. EXPERIMENTAL METHODSThe manufacture of the test specimens was carried out with Arcam A2 EBM® equipment.  Process parameters were changed in the software EBM controle6 and three groups of eight specimens with different parameter setting were made. The specimens were then tested with whole blood from two individuals in a modified version of the blood chamber model named above7. Surface roughness was characterised with a stylus profiler Dektak® 6M. RESULTS AND DISCUSSIONTable 1 percents Ra (average roughness) and plt (platelets) activated for each group.                                          Table 1group         Ra mean      std                    plt mean   std1              35.0µm        3.24µm           92.9%       5.25%2              28.5µm        2.14µm           85.3%       7.61%3              28.2µm        1.75µm           84.4%       10.3% The results indicate that rougher surfaces are more thrombogenic which could imply that they are more suitable for bone ingrowth then smooth surfaces. Increase of total surface area (due to larger roughness) might be a reason for the improved trombogenic response.  Figure 1 shows how many platelets were stuck on the specimen surfaces. Horizontal lines represent mean values and standard deviation. CONCLUSIONThe surface properties of EBM produced implants are affected by the made parameters. The results in Figure 1 corresponds well with previous results that rougher surfaces promotes bone ingrowth4. The increased thrombogenicity and platelet binding with rougher surfaces indicates that EBM made surfaces can affect the final bone response and will possibly suit as implant material. REFERENCES1. Raennar, L.E., et al., Efficientcooling with tool inserts manufactured by electronbeam melting. Rapid Prototyping Journal. 13:128-35, 20072. Cronskaer, M. Applications of Electron Beam Melting to Titanium Hip Stem Implants3. Mazzoli, A., et al., Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment. Materials and Design. 30:318-3192, 20094. Frosch, K.H., et al., Metallic Biomaterials in Skeletal Rapair. Eur J Trauma. 32:149-59, 20065. Thor A., et al.. The role of whole blood in thrombin generation in contact with various titanium surfaces. Biomaterials. 28:966-97, 20076. Arcam AB (www.arcam.com)7. Hong, J., et al., A new in vitro model to study interaction between whole blood and biomaterials. Studies of platelet and coagulation activation acid the effect of aspirin. Biomaterials. 20:603-611, 1999

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Medicinsk material- och protesteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Medical Materials (hsv//eng)

Nyckelord

Additive manufacturing
rapid prototyping
electron beam melting

Publikations- och innehållstyp

vet (ämneskategori)
kon (ämneskategori)

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Ek, Rebecca, 198 ...
Hong, Jaan
Dejanovic, Slavk ...
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Medicinteknik
och Medicinsk materi ...
Artiklar i publikationen
Av lärosätet
Mittuniversitetet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy