SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Mogensen Peter)
 

Search: WFRF:(Mogensen Peter) > (2015-2019) > Plasticity in mitoc...

Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle

Nielsen, Joachim (author)
Univ Southern Denmark, Denmark
Gejl, Kasper D. (author)
Univ Southern Denmark, Denmark
Hey-Mogensen, Martin (author)
Univ Southern Denmark, Denmark
show more...
Holmberg, Hans-Christer, 1958- (author)
Mittuniversitetet,Avdelningen för hälsovetenskap,Swedish Winter Sports Research Centre,Mittuniversitetet, Avdelningen för hälsovetenskap
Suetta, Charlotte (author)
Univ Copenhagen, Denmark
Krustrup, Peter (author)
Univ Southern Denmark, Denmark; Univ Exeter, England
Elemans, Coen P. H. (author)
Univ Southern Denmark, Denmark
Ørtenblad, Niels (author)
Mittuniversitetet,Avdelningen för hälsovetenskap,Univ Southern Denmark, Denmark,Swedish Winter Sports Research Centre,Mittuniversitetet, Avdelningen för hälsovetenskap
show less...
 (creator_code:org_t)
2017
2017
English.
In: Journal of Physiology. - 0022-3751 .- 1469-7793. ; 595:9, s. 2839-2847
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Mitochondrial energy production involves the movement of protons down a large electrochemical gradient via ATP synthase located on the folded inner membrane, known as cristae. In mammalian skeletal muscle, the density of cristae in mitochondria is assumed to be constant. However, recent experimental studies have shown that respiration per mitochondria varies. Modelling studies have hypothesized that this variation in respiration per mitochondria depends on plasticity in cristae density, although current evidence for such a mechanism is lacking. In the present study, we confirm this hypothesis by showing that, in human skeletal muscle, and in contrast to the current view, the mitochondrial cristae density is not constant but, instead, exhibits plasticity with long-term endurance training. Furthermore, we show that frequently recruited mitochondria-enriched fibres have significantly increased cristae density and that, at the whole-body level, muscle mitochondrial cristae density is a better predictor of maximal oxygen uptake rate than muscle mitochondrial volume. Our findings establish an elevating mitochondrial cristae density as a regulatory mechanism for increasing metabolic power in human skeletal muscle. We propose that this mechanism allows evasion of the trade-off between cell occupancy by mitochondria and other cellular constituents, as well as improved metabolic capacity and fuel catabolism during prolonged elevated energy requirements.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Hälsovetenskap -- Idrottsvetenskap (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Health Sciences -- Sport and Fitness Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view