SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Bauersachs Thorsten)
 

Search: WFRF:(Bauersachs Thorsten) > Microbial life in t...

Microbial life in the nascent Chicxulub crater

Schaefer, Bettina (author)
Curtin University
Grice, Kliti (author)
Curtin University
Coolen, Marco (author)
Curtin University
show more...
Summons, Roger (author)
Massachusetts Institute of Technology
Vui, Xingqian (author)
Massachusetts Institute of Technology
Bauersachs, Thorsten (author)
Christian-Albrechts-University
Schwark, Lorenz (author)
Curtin University
Böttcher4, Michael (author)
University of Greifswald
Bralowe, Timothy (author)
Pennsylvania State University
Lyons, Shelby (author)
Pennsylvania State University
Freeman, Katherine (author)
Pennsylvania State University
Cockell, Charles (author)
University of Edinburgh
Gulick, Sean (author)
University of Texas at Austin
Morgan, Joanna (author)
Imperial College, London
Whalen, Michael (author)
University of Alaska
Lowery, Christopher (author)
University of Texas at Austin
Vajda, Vivi (author)
Naturhistoriska riksmuseet,Enheten för paleobiologi,Department of Geology, Lund University, Sweden
show less...
 (creator_code:org_t)
Boulder : Geological Society of America, 2020
2020
English.
In: Geology. - Boulder : Geological Society of America. - 0091-7613 .- 1943-2682. ; 48, s. 328-332
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The Chicxulub crater was formed by an asteroid impact at ca. 66 Ma. The impact is considered to have contributed to the end-Cretaceous mass extinction and reduced productivity in the world’s oceans due to a transient cessation of photosynthesis. Here, biomarker profiles extracted from crater core material reveal exceptional insights into the post-impact upheaval and rapid recovery of microbial life. In the immediate hours to days after the impact, ocean resurge flooded the crater and a subsequent tsunami delivered debris from the surrounding carbonate ramp. Deposited material, including biomarkers diagnostic for land plants, cyanobacteria, and photosynthetic sulfur bacteria, appears to have been mobilized by wave energy from coastal microbial mats. As that energy subsided, days to months later, blooms of unicellular cyanobacteria were fueled by terrigenous nutrients. Approximately 200 k.y. later, the nutrient supply waned and the basin returned to oligotrophic conditions, as evident from N2-fixing cyanobacteria biomarkers. At 1 m.y. after impact, the abundance of photosynthetic sulfur bacteria supported the development of water-column photic zone euxinia within the crater.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Annan geovetenskap och miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Other Earth and Related Environmental Sciences (hsv//eng)

Keyword

Cretaceous
Paleogene
extinction
fossil flora
palynology
Mexico
Diversity of life
Livets mångfald
The changing Earth
Den föränderliga jorden

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • Geology (Search for host publication in LIBRIS)

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view