SwePub
Sök i LIBRIS databas

  Utökad sökning

L773:2542 5196
 

Sökning: L773:2542 5196 > (2024) > In utero exposures ...

In utero exposures to perfluoroalkyl substances and the human fetal liver metabolome in Scotland : a cross-sectional study

Hyötyläinen, Tuulia, 1971- (författare)
Örebro universitet,Institutionen för naturvetenskap och teknik
McGlinchey, Aidan J, 1984- (författare)
Örebro universitet,Institutionen för medicinska vetenskaper
Salihovic, Samira, Associate Senior Lecturer, 1985- (författare)
Örebro universitet,Institutionen för medicinska vetenskaper,Institutionen för naturvetenskap och teknik
visa fler...
Schubert, Antonia (författare)
School of Science and Technology, Örebro University, Örebro, Sweden
Douglas, Alex (författare)
The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
Hay, David C. (författare)
Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
O'Shaughnessy, Peter J. (författare)
School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, UK
Iredale, John P. (författare)
Senate House, University of Bristol, Bristol, UK
Shaw, Sophie (författare)
All Wales Medical Genomics Service, Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
Fowler, Paul A. (författare)
The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
Oresic, Matej, 1967- (författare)
Örebro universitet,Institutionen för medicinska vetenskaper
visa färre...
 (creator_code:org_t)
Elsevier, 2024
2024
Engelska.
Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 8:1, s. e5-e17
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substances are classed as endocrine disrupting compounds but continue to be used in many products such as firefighting foams, flame retardants, utensil coatings, and waterproofing of food packaging. Perfluoroalkyl exposure aberrantly modulates lipid, metabolite, and bile acid levels, increasing susceptibility to onset and severity of metabolic diseases, such as diabetes and metabolic dysfunction-associated steatotic liver disease. To date, most studies in humans have focused on perfluoroalkyl-exposure effects in adults. In this study we aimed to show if perfluoroalkyls are present in the human fetal liver and if they have metabolic consequences for the human fetus.METHODS: In this cross-sectional study, human fetal livers from elective termination of pregnancies at the Aberdeen Pregnancy Counselling Service, Aberdeen, UK, were analysed by both targeted (bile acids and perfluoroalkyl substances) and combined targeted and untargeted (lipids and polar metabolites) mass spectrometry based metabolomic analyses, as well as with RNA-Seq. Only fetuses from normally progressing pregnancies (determined at ultrasound scan before termination), terminated for non-medical reasons, from women older than 16 years, fluent in English, and between 11 and 21 weeks of gestation were collected. Women exhibiting considerable emotional distress or whose fetuses had anomalies identified at ultrasound scan were excluded. Stringent bioinformatic and statistical methods such as partial correlation network analysis, linear regression, and pathway analysis were applied to this data to investigate the association of perfluoroalkyl exposure with hepatic metabolic pathways.FINDINGS: Fetuses included in this study were collected between Dec 2, 2004, and Oct 27, 2014. 78 fetuses were included in the study: all 78 fetuses were included in the metabolomics analysis (40 female and 38 male) and 57 fetuses were included in the RNA-Seq analysis (28 female and 29 male). Metabolites associated with perfluoroalkyl were identified in the fetal liver and these varied with gestational age. Conjugated bile acids were markedly positively associated with fetal age. 23 amino acids, fatty acids, and sugar derivatives in fetal livers were inversely associated with perfluoroalkyl exposure, and the bile acid glycolithocholic acid was markedly positively associated with all quantified perfluoroalkyl. Furthermore, 7α-hydroxy-4-cholesten-3-one, a marker of bile acid synthesis rate, was strongly positively associated with perfluoroalkyl levels and was detectable as early as gestational week 12.INTERPRETATION: Our study shows direct evidence for the in utero effects of perfluoroalkyl exposure on specific key hepatic products. Our results provide evidence that perfluoroalkyl exposure, with potential future consequences, manifests in the human fetus as early as the first trimester of gestation. Furthermore, the profiles of metabolic changes resemble those observed in perinatal perfluoroalkyl exposures. Such exposures are already linked with susceptibility, initiation, progression, and exacerbation of a wide range of metabolic diseases.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Hälsovetenskap -- Arbetsmedicin och miljömedicin (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Health Sciences -- Occupational Health and Environmental Health (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy