SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Utökad sökning

L773:0160 2527 OR L773:1873 6386
 

Sökning: L773:0160 2527 OR L773:1873 6386 > RISE > Thermodynamic equil...

  • Moradian, Farzad,1981-Högskolan i Borås,Akademin för textil, teknik och ekonomi,Combustion and thermal processes,University of Borås (författare)

Thermodynamic equilibrium prediction of bed agglomeration tendency in dual fluidized-bed gasification of forest residues

  • Artikel/kapitelEngelska2016

Förlag, utgivningsår, omfång ...

  • Elsevier BV,2016
  • printrdacarrier

Nummerbeteckningar

  • LIBRIS-ID:oai:DiVA.org:ri-27578
  • https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-27578URI
  • https://doi.org/10.1016/j.fuproc.2016.08.014DOI
  • https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-127580URI
  • https://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-10727URI
  • https://research.chalmers.se/publication/245256URI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:ref swepub-contenttype
  • Ämneskategori:art swepub-publicationtype

Anmärkningar

  • References: Leckner, B., Process aspects in combustion and gasification waste-to-energy (WtE) units (2015) Waste Manag., 37, pp. 13-25; Caputo, A.C., Palumbo, M., Pelagagge, P.M., Scacchia, F., Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables (2005) Biomass Bioenergy, 28, pp. 35-51; Bain, R.L., Broer, K., Gasification (2011) Thermochemical Processing of Biomass, pp. 47-77. , John Wiley & Sons, Ltd; Arena, U., Scala, F., 17-Fluidized bed gasification (2013) Fluidized Bed Technologies for Near-zero Emission Combustion and Gasification, pp. 765-812. , Woodhead Publishing; Miller, B.G., Miller, S.F., Miller, B.G., Tillman, D.A., Chapter 8 - Fluidized-bed firing systems (2008) Combustion Engineering Issues for Solid Fuel Systems, pp. 275-340. , Academic Press Burlington; Hupa, M., Ash-related issues in fluidized-bed combustion of biomasses: recent research highlights (2012) Energy Fuel, 26, pp. 4-14; Kirnbauer, F., Hofbauer, H., Investigations on bed material changes in a dual fluidized bed steam gasification plant in Güssing, Austria (2011) Energy Fuel, 25, pp. 3793-3798; Kuba, M., He, H., Kirnbauer, F., Boström, D., Öhman, M., Hofbauer, H., Deposit build-up and ash behavior in dual fluid bed steam gasification of logging residues in an industrial power plant (2015) Fuel Process. Technol., 139, pp. 33-41; Kern, S., Pfeifer, C., Hofbauer, H., Gasification of lignite in a dual fluidized bed gasifier—influence of bed material particle size and the amount of steam (2013) Fuel Process. Technol., 111, pp. 1-13; Zevenhoven-Onderwater, M., Öhman, M., Skrifvars, B.-J., Backman, R., Nordin, A., Hupa, M., Bed agglomeration characteristics of wood-derived fuels in FBC (2006) Energy Fuel, 20, pp. 818-824; Tchoffor, P.A., Davidsson, K.O., Thunman, H., Production of activated carbon within the dual fluidized bed gasification process (2015) Ind. Eng. Chem. Res., 54, pp. 3761-3766; Murakami, T., Xu, G., Suda, T., Matsuzawa, Y., Tani, H., Fujimori, T., Some process fundamentals of biomass gasification in dual fluidized bed (2007) Fuel, 86, pp. 244-255; Larsson, A., Seemann, M., Neves, D., Thunman, H., Evaluation of performance of industrial-scale dual fluidized bed gasifiers using the Chalmers 2–4-MWth gasifier (2013) Energy Fuel, 27, pp. 6665-6680; Corella, J., Toledo, J.M., Molina, G., A review on dual fluidized-bed biomass gasifiers (2007) Ind. Eng. Chem. Res., 46, pp. 6831-6839; Kirnbauer, F., Hofbauer, H., The mechanism of bed material coating in dual fluidized bed biomass steam gasification plants and its impact on plant optimization (2013) Powder Technol., 245, pp. 94-104; Pfeifer, C., Puchner, B., Hofbauer, H., Comparison of dual fluidized bed steam gasification of biomass with and without selective transport of CO2 (2009) Chem. Eng. Sci., 64, pp. 5073-5083; Zevenhoven, M., Yrjas, P., Hupa, M., Ash-forming matter and ash-related problems (2010) Handbook of Combustion, , Wiley-VCH Verlag GmbH & Co. KGaA; Skrifvars, B.-J., Hupa, M., Backman, R., Hiltunen, M., Sintering mechanisms of FBC ashes (1994) Fuel, 73, pp. 171-176; Geyter, S.D., Measures for preventing bed agglomeration using ash reaction chemistry (2008) Department of Applied Physics and Electronics, , Umeå University Umeå; Brus, E., Öhman, M., Nordin, A., Mechanisms of bed agglomeration during fluidized-bed combustion of biomass fuels (2005) Energy Fuel, 19, pp. 825-832; Grimm, A., Skoglund, N., Boström, D., Öhman, M., Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus-rich biomass fuels (2011) Energy Fuel, 25, pp. 937-947; Grimm, A., Öhman, M., Lindberg, T., Fredriksson, A., Boström, D., Bed agglomeration characteristics in fluidized-bed combustion of biomass fuels using olivine as bed material (2012) Energy Fuel, 26, pp. 4550-4559; Visser, H.J., van Lith, S.C., Kiel, J.H., Biomass ash-bed material interactions leading to agglomeration in FBC (2008) J. Energy Res. Technol., 130, p. 011801; Brus, E., Bed agglomeration during combustion and gasification of biomass fuels-mechanisms and measure prevention (2004) Umeå University; Öhman, M., Pommer, L., Nordin, A., Bed agglomeration characteristics and mechanisms during gasification and combustion of biomass fuels (2005) Energy Fuel, 19, pp. 1742-1748; He, H., Ji, X., Boström, D., Backman, R., Öhman, M., Mechanism of quartz bed particle layer formation in fluidized bed combustion of wood-derived fuels (2016) Energy Fuel, 30, pp. 2227-2232; Zevenhoven, M., Yrjas, P., Skrifvars, B.-J., Hupa, M., Characterization of ash-forming matter in various solid fuels by selective leaching and its implications for fluidized-bed combustion (2012) Energy Fuel, 26, pp. 6366-6386; Lindberg, D., Backman, R., Chartrand, P., Hupa, M., Towards a comprehensive thermodynamic database for ash-forming elements in biomass and waste combustion — current situation and future developments (2013) Fuel Process. Technol., 105, pp. 129-141; Zevenhoven-Onderwater, M., Blomquist, J.P., Skrifvars, B.J., Backman, R., Hupa, M., The prediction of behaviour of ashes from five different solid fuels in fluidised bed combustion (2000) Fuel, 79, pp. 1353-1361; Nutalapati, D., Gupta, R., Moghtaderi, B., Wall, T.F., Assessing slagging and fouling during biomass combustion: a thermodynamic approach allowing for alkali/ash reactions (2007) Fuel Process. Technol., 88, pp. 1044-1052; Mueller, C., Skrifvars, B.-J., Backman, R., Hupa, M., Ash deposition prediction in biomass fired fluidised bed boilers? Combination of CFD and advanced fuel analysis (2003) Prog. Comput. Fluid Dy., 3, pp. 112-120; Teixeira, P., Lopes, H., Gulyurtlu, I., Lapa, N., Abelha, P., Slagging and fouling during coal and biomass cofiring: chemical equilibrium model applied to FBC (2013) Energy Fuel, 28, pp. 697-713; Moradian, F., Pettersson, A., Richards, T., Thermodynamic equilibrium model applied to predict the fouling tendency in a commercial fluidized-bed boiler, combusting solid waste (2015) Energy Fuel, 29, pp. 3483-3494; Boström, D., Skoglund, N., Grimm, A., Boman, C., Öhman, M., Broström, M., Backman, R., Ash transformation chemistry during combustion of biomass (2011) Energy Fuel, 26, pp. 85-93; Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., Mekhilef, S., A review on biomass as a fuel for boilers (2011) Renew. Sust. Energ. Rev., 15, pp. 2262-2289; Pettersson, A., Zevenhoven, M., Steenari, B.-M., Åmand, L.-E., Application of chemical fractionation methods for characterisation of biofuels, waste derived fuels and CFB co-combustion fly ashes (2008) Fuel, 87, pp. 3183-3193; Tchoffor, P.A., Davidsson, K.O., Thunman, H., Effects of steam on the release of potassium, chlorine, and sulfur during char conversion, investigated under dual-fluidized-bed gasification conditions (2014) Energy Fuel, 28, pp. 6953-6965; Zevenhoven, M., Skrifvars, B.J., Yrjas, P., Hupa, M., Nuutinen, L., Laitinen, R., Searching for improved characterisation of ash forming matter in biomass (2001) 16th International Conference on Fluidized Bed Combustion, p. 2001; Gómez-Barea, A., Leckner, B., Modeling of biomass gasification in fluidized bed (2010) Prog. Energy Combust. Sci., 36, pp. 444-509; Bale, C.W., Bélisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Hack, K., Jung, I.H., Petersen, S., FactSage thermochemical software and databases — recent developments (2009) Calphad, 33, pp. 295-311; Kaushal, P., Tyagi, R., Steam assisted biomass gasification—an overview (2012) Can. J. Chem. Eng., 90, pp. 1043-1058; Pommer, L., Öhman, M., Boström, D., Burvall, J., Backman, R., Olofsson, I., Nordin, A., Mechanisms behind the positive effects on bed agglomeration and deposit formation combusting forest residue with peat additives in fluidized beds (2009) Energy Fuel, 23, pp. 4245-4253
  • Dual fluidized-bed (DFB) gasification is one of the recently developed technologies for production of heat, power, transportation fuels and synthetic chemicals through steam gasification of biomass. Bed agglomeration is a serious ash-related problem that should be taken into account when biomass-based fuels are selected for fluidized-bed gasification and combustion. This study developed a thermodynamic equilibrium model to assess the risk of bed agglomeration in gasification and combustion reactors of a DFB gasifier using biomass (forest residues) as feedstock. The modelling approach combined thermodynamic equilibrium calculations with chemical fractionation technique to predict the composition and melting behaviour of the fuel-derived ash as well as bed particles coating layer in the gasification and combustion reactors. FactSage was employed for the thermodynamic equilibrium calculations. The modelling results were then compared with experimental data obtained from a full-scale DFB gasifier to estimate the reliability and validity of the predictive model. In general, a good agreement was found between the modelling results and experimental observations. For the forest residues as feedstock and olivine as bed material, the modelling results indicate a low risk of bed agglomeration in the DFB gasifier, as long as the dominant temperature in the combustion zone is below 1020 °C. In contrast, quartz as bed material in the DFB gasifier was shown to significantly increase the risk of bed agglomeration through coating-induced agglomeration mechanism.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Tchoffor Atongka, Placid,1981RISE,SP – Sveriges Tekniska Forskningsinstitut,Chalmers University of Technology, Sweden,SP Technical Research Institute of Sweden,Chalmers tekniska högskola(Swepub:cth)tchoffor (författare)
  • Davidsson, Kent O.SP Sveriges Tekniska Forskningsinstitut AB,RISE,SP – Sveriges Tekniska Forskningsinstitut,SP Technical Research Institute of Sweden (författare)
  • Pettersson, AnitaHögskolan i Borås,Akademin för textil, teknik och ekonomi,Combustion and thermal processes,University of Borås(Swepub:hb)APE (författare)
  • Backman, RainerUmeå universitet,Institutionen för tillämpad fysik och elektronik,Umeå University, Sweden(Swepub:umu)raba0001 (författare)
  • Högskolan i BoråsAkademin för textil, teknik och ekonomi (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:Fuel processing technology: Elsevier BV154, s. 82-900378-38201873-7188

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy