SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Ohlsson Anders)
 

Search: WFRF:(Ohlsson Anders) > (2010-2019) > Surface and disloca...

Surface and dislocation investigation of planar GaN formed by crystal reformation of nanowire arrays

Colvin, Jovana (author)
Lund University,Lunds universitet,NanoLund: Centre for Nanoscience,Annan verksamhet, LTH,Lunds Tekniska Högskola,Synkrotronljusfysik,Fysiska institutionen,Institutioner vid LTH,Other operations, LTH,Faculty of Engineering, LTH,Synchrotron Radiation Research,Department of Physics,Departments at LTH,Faculty of Engineering, LTH
Ciechonski, Rafal (author)
Glo AB, Sweden
Lenrick, Filip (author)
Lund University,Lunds universitet,NanoLund: Centre for Nanoscience,Annan verksamhet, LTH,Lunds Tekniska Högskola,Centrum för analys och syntes,Kemiska institutionen,Institutioner vid LTH,Other operations, LTH,Faculty of Engineering, LTH,Centre for Analysis and Synthesis,Department of Chemistry,Departments at LTH,Faculty of Engineering, LTH
show more...
Hultin, Olof (author)
RISE,Acreo,Research Institutes of Sweden (RISE)
Khalilian, Maryam (author)
Lund University,Lunds universitet,NanoLund: Centre for Nanoscience,Annan verksamhet, LTH,Lunds Tekniska Högskola,Fasta tillståndets fysik,Fysiska institutionen,Institutioner vid LTH,Other operations, LTH,Faculty of Engineering, LTH,Solid State Physics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH
Mikkelsen, Anders (author)
Lund University,Lunds universitet,NanoLund: Centre for Nanoscience,Annan verksamhet, LTH,Lunds Tekniska Högskola,Synkrotronljusfysik,Fysiska institutionen,Institutioner vid LTH,Other operations, LTH,Faculty of Engineering, LTH,Synchrotron Radiation Research,Department of Physics,Departments at LTH,Faculty of Engineering, LTH
Gustafsson, Anders (author)
Lund University,Lunds universitet,NanoLund: Centre for Nanoscience,Annan verksamhet, LTH,Lunds Tekniska Högskola,Fasta tillståndets fysik,Fysiska institutionen,Institutioner vid LTH,Other operations, LTH,Faculty of Engineering, LTH,Solid State Physics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH
Samuelson, Lars (author)
Lund University,Lunds universitet,NanoLund: Centre for Nanoscience,Annan verksamhet, LTH,Lunds Tekniska Högskola,Fasta tillståndets fysik,Fysiska institutionen,Institutioner vid LTH,Other operations, LTH,Faculty of Engineering, LTH,Solid State Physics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH
Timm, Rainer (author)
Lund University,Lunds universitet,NanoLund: Centre for Nanoscience,Annan verksamhet, LTH,Lunds Tekniska Högskola,Synkrotronljusfysik,Fysiska institutionen,Institutioner vid LTH,Other operations, LTH,Faculty of Engineering, LTH,Synchrotron Radiation Research,Department of Physics,Departments at LTH,Faculty of Engineering, LTH
Ohlsson, Jonas (author)
Lund University,Lunds universitet,NanoLund: Centre for Nanoscience,Annan verksamhet, LTH,Lunds Tekniska Högskola,Other operations, LTH,Faculty of Engineering, LTH,Hexagem AB
show less...
 (creator_code:org_t)
American Physical Society, 2019
2019
English.
In: Physical Review Materials. - : American Physical Society. - 2475-9953. ; 3:9
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • In this paper we present a process of forming monolithic GaN surface from an ordered nanowire array by means of material redistribution. This process, referred to as reformation, is performed in a conventional MOVPE crystal growth system with the gallium supply turned off and allows a crystal nanostructure to change shape according to differences in surface energies between its facets. Using reformation, coalescence may proceed closer to thermodynamic equilibrium, which is required for fabrication of high-quality substrate material. Scanning probe techniques are utilized, complemented by cathodoluminescence and electron microscopy, to investigate structural and electrical properties of the surface after reformation, as well as to assess densities, location, and formation of different types of defects in the GaN film. Spatial variations in material properties such as intrinsic majority-carrier types can be attributed to the radical changes in growth conditions required for sequential transition between nanowire growth, selective shell growth, and reformation. These properties enable us to assess the impact of the process on densities, locations, and formation of different types of dislocations in the GaN film. We find a fraction of the nanowires to comprise of a single electrically neutral edge dislocation, propagating from the GaN buffer, while electrically active dislocations are found at coalesced interfaces between nanowires. By decreasing the mask aperture size and changing the nucleation conditions the prevalence of nanowires comprising edge dislocation was significantly reduced from 6% to 3%, while the density of interface dislocations was reduced from 6×108 to 4×107cm-2. Using a sequential reformation process was found to create inversion domains with low surface potential N-polar regions in an otherwise Ga-polar GaN film. The inversion domains were associated with pinned dislocation pairs, and were further confirmed by selective wet etching in NaOH. This lateral polarity inversion was thoroughly eliminated in samples formed by a continuous reformation process. These results reveal a path and challenges for growing GaN substrates of superior crystal quality through nanowire reformation. 

Subject headings

NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Keyword

Edge dislocations
III-V semiconductors
Nanowires
Scanning electron microscopy
Sodium hydroxide
Substrates
Wet etching
Electrically actives
Interface dislocation
Ordered nanowire arrays
Reformation process
Scanning probe techniques
Selective wet etching
Structural and electrical properties
Thermodynamic equilibria
Gallium nitride

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view