SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Hällbrink Mattias)
 

Search: WFRF:(Hällbrink Mattias) > Saturated Fatty Aci...

Saturated Fatty Acid Analogues of Cell-Penetrating Peptide PepFect14: Role of Fatty Acid Modification in Complexation and Delivery of Splice-Correcting Oligonucleotides

Lehto, Tõnis (author)
Stockholms universitet,Institutionen för neurokemi
Vasconcelos, Luis (author)
Stockholms universitet,Institutionen för neurokemi
Margus, Helerin (author)
show more...
Figueroa, Ricardo (author)
Stockholms universitet,Institutionen för neurokemi
Pooga, Margus (author)
Hällbrink, Mattias (author)
Stockholms universitet,Institutionen för neurokemi
Langel, Ülo (author)
Stockholms universitet,Institutionen för neurokemi,University of Tartu, Estonia
show less...
 (creator_code:org_t)
2017-03-02
2017
English.
In: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 28:3, s. 782-792
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Modifying cell-penetrating peptides (CPPs) with fatty acids has long been used to improve peptide-mediated nucleic acid delivery. In this study we have revisited this phenomenon with a systematic approach where we developed a structure activity relationship to describe the role of the acyl chain length in the transfection process. For that we took a well studied CPP, PepFectl4, as the basis and varied its N-terminal acyl chain length from 2 to 22 carbons. To evaluate the delivery efficiency, the peptides were noncovalently complexed with a splice-correcting oligonucleotide (SCO) and tested in HeLa pLuc705 reporter cell line. Our results demonstrate that biological splice-correction activity emerges from acyl chain of 12 carbons and increases linearly with each additional carbon. To assess the underlying factors regarding how the transfection efficacy of these complexes is dependent on hydrophobicity, we used an array of different methods. For the functionally active peptides (C12-22) there was no apparent difference in their physicochemical properties, including complex formation efficiency, hydrodynamic size, and zeta potential. Moreover, membrane activity studies with peptides and their complexes with SCOs confirmed that the toxicity of the complexes at higher molar ratios is mainly caused by the free fraction of the peptide which is not incorporated into the peptide/oligonucleotide complexes. Finally, we show that the increase in splice-correcting activity correlates with the ability of the complexes to associate with the cells. Collectively these studies lay the ground work for how to design highly efficient CPPs and how to optimize their oligonucleotide complexes for lowest toxicity without losing efficiency.

Subject headings

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Keyword

peptide
delivery
oligonucleotide
neurokemi med molekylär neurobiologi
Neurochemistry with Molecular Neurobiology

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view