SwePub
Sök i LIBRIS databas

  Extended search

L773:1680 7316 OR L773:1680 7324
 

Search: L773:1680 7316 OR L773:1680 7324 > (2015-2019) > Marine cloud bright...

Marine cloud brightening - as effective without clouds

Ahlm, Lars (author)
Stockholms universitet,Meteorologiska institutionen (MISU),University of Oslo, Norway
Jones, Andy (author)
Stjern, Camilla W. (author)
show more...
Muri, Helene (author)
Kravitz, Ben (author)
Kristjánsson, Jón Egill (author)
show less...
 (creator_code:org_t)
2017-11-06
2017
English.
In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:21, s. 13071-13087
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30 degrees N and 30 degrees S are set in each model to generate a global-mean effective radiative forcing (ERF) of -2.0 W m(-2) at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. These findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Meteorologi och atmosfärforskning (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Meteorology and Atmospheric Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view