SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Pauchard A.)
 

Search: WFRF:(Pauchard A.) > Comparing temperatu...

  • Lembrechts, Jonas J. (author)

Comparing temperature data sources for use in species distribution models : From in-situ logging to remote sensing

  • Article/chapterEnglish2019

Publisher, publication year, extent ...

  • 2019-07-22
  • Wiley,2019
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:su-171637
  • https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-171637URI
  • https://doi.org/10.1111/geb.12974DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Aim Although species distribution models (SDMs) traditionally link species occurrences to free-air temperature data at coarse spatio-temporal resolution, the distribution of organisms might instead be driven by temperatures more proximal to their habitats. Several solutions are currently available, such as downscaled or interpolated coarse-grained free-air temperatures, satellite-measured land surface temperatures (LST) or in-situ-measured soil temperatures. A comprehensive comparison of temperature data sources and their performance in SDMs is, however, currently lacking. Location Northern Scandinavia. Time period 1970-2017. Major taxa studied Higher plants. Methods We evaluated different sources of temperature data (WorldClim, CHELSA, MODIS, E-OBS, topoclimate and soil temperature from miniature data loggers), differing in spatial resolution (from 1 '' to 0.1 degrees), measurement focus (free-air, ground-surface or soil temperature) and temporal extent (year-long versus long-term averages), and used them to fit SDMs for 50 plant species with different growth forms in a high-latitudinal mountain region. Results Differences between these temperature data sources originating from measurement focus and temporal extent overshadow the effects of temporal climatic differences and spatio-temporal resolution, with elevational lapse rates ranging from -0.6 degrees C per 100 m for long-term free-air temperature data to -0.2 degrees C per 100 m for in-situ soil temperatures. Most importantly, we found that the performance of the temperature data in SDMs depended on the growth forms of species. The use of in-situ soil temperatures improved the explanatory power of our SDMs (R-2 on average +16%), especially for forbs and graminoids (R-2 +24 and +21% on average, respectively) compared with the other data sources. Main conclusions We suggest that future studies using SDMs should use the temperature dataset that best reflects the ecology of the species, rather than automatically using coarse-grained data from WorldClim or CHELSA.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Lenoir, Jonathan (author)
  • Roth, NinaStockholms universitet,Institutionen för naturgeografi(Swepub:su)niro1850 (author)
  • Hattab, Tarek (author)
  • Milbau, Ann (author)
  • Haider, Sylvia (author)
  • Pellissier, Loïc (author)
  • Pauchard, Aníbal (author)
  • Backes, Amanda Ratier (author)
  • Dimarco, Romina D. (author)
  • Nuñez, Martin A. (author)
  • Aalto, Juha (author)
  • Nijs, Ivan (author)
  • Stockholms universitetInstitutionen för naturgeografi (creator_code:org_t)

Related titles

  • In:Global Ecology and Biogeography: Wiley28:11, s. 1578-15961466-822X1466-8238

Internet link

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view