SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Timmer J R)
 

Search: WFRF:(Timmer J R) > (2020-2021) > Molecular Functiona...

Molecular Functionalization of NiO Nanocatalyst for Enhanced Water Oxidation by Electronic Structure Engineering

Fan, Lizhou (author)
KTH,Organisk kemi
Zhang, Biaobiao (author)
KTH,Organisk kemi
Qiu, Zhen, 1988- (author)
Uppsala universitet,Fasta tillståndets fysik
show more...
Dharanipragada, N. V. R. Aditya (author)
Stockholms universitet,Institutionen för material- och miljökemi (MMK)
Timmer, Brian J. J. (author)
Zhang, Fuguo (author)
Sheng, Xia (author)
Liu, Tianqi (author)
Meng, Qijun (author)
Inge, A. Ken (author)
Stockholms universitet,Institutionen för material- och miljökemi (MMK)
Edvinsson, Tomas, Professor, 1970- (author)
Uppsala universitet,Oorganisk kemi,Fasta tillståndets fysik
Sun, Licheng, 1962- (author)
KTH,Molekylär elektronik, CMD,Kemi,Organisk kemi
show less...
 (creator_code:org_t)
2020-09-24
2020
English.
In: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 13:22, s. 5901-5909
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Tuning the local environment of nanomaterial-based catalysts has emerged as an effective approach to optimize their oxygen evolution reaction (OER) performance, yet the controlled electronic modulation around surface active sites remains a great challenge. Herein, directed electronic modulation of NiO nanoparticles was achieved by simple surface molecular modification with small organic molecules. By adjusting the electronic properties of modifying molecules, the local electronic structure was rationally tailored and a close electronic structure-activity relationship was discovered: the increasing electron-withdrawing modification readily decreased the electron density around surface Ni sites, accelerating the reaction kinetics and improving OER activity, and vice versa. Detailed investigation by operando Raman spectroelectrochemistry revealed that the electron-withdrawing modification facilitates the charge-transfer kinetics, stimulates the catalyst reconstruction, and promotes abundant high-valent gamma-NiOOH reactive species generation. The NiO-C(6)F(5)catalyst, with the optimized electronic environment, exhibited superior performance towards water oxidation. This work provides a well-designed and effective approach for heterogeneous catalyst fabrication under the molecular level.

Subject headings

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)
NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Nanoteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Nano-technology (hsv//eng)

Keyword

catalyst self-reconstruction
electrocatalysis
molecular modification
nanomaterials
water oxidation
Green & Sustainable Science & Technology

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view