SwePub
Sök i LIBRIS databas

  Extended search

hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Immunologi)
 

Search: hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Immunologi) > Timing Matters :

Timing Matters : Wounding and entomopathogenic nematode infection kinetics

Dziedziech, Alexis, 1991- (author)
Stockholms universitet,Institutionen för molekylär biovetenskap, Wenner-Grens institut
Theopold, Ulrich, Professor (thesis advisor)
Stockholms universitet,Institutionen för molekylär biovetenskap, Wenner-Grens institut
Giangrande, Angela, Professor (opponent)
Université de Strasbourg, France
 (creator_code:org_t)
ISBN 9789179114442
Stockholm : Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2021
English 48 s.
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Over time, insects have developed complex strategies to defend themselves against presenting threats. However, in the evolutionary arms race of survival, pathogens have adapted to quickly overcome the immune response mounted by the host. In this thesis, we assess how quickly entomopathogenic nematodes (EPNs) can overcome the host, Drosophila melanogaster. We then look at the clotting reaction at a hypothetical point of entry for the nematode and bring resolution to the order of protein interaction focusing on three proteins important in the anti-nematode defense. Finally, we look closer into detail at how crystal cells secrete one of those proteins, prophenoloxidase (PPOII) using a mode of programmed cell death. (Paper I) In the course of EPN infection, little was known about how quickly the worms can overcome the host immune system. Here we found that after penetrating the host, EPNs cause septicemia within 4 to 6 hours. (Paper II) Three proteins, Glutactin (Glt), Transglutaminase (Tg), and PPOII have been found to be important in the anti-nematode response. Here we created GFP-tagged fly constructs to follow their role in clot formation. In early clot formation, Tg was immediately secreted from hemocytes though it was localized around the cell membrane, Glt then entered clot fibers followed by PPOII which acted in late clot formation. (Paper III) Here we looked closer into Tg and PPOII secretion variability. PPOII from immature, but not mature crystal cells colocalized with a membrane marker. Tg, when driven with a pan tissue driver, was found located in clotting fibers, in contrast with paper II. (Paper IV) In an in vivo immune scenario, crystal cells were recruited to the wound site and burst rapidly in a caspase-dependent manner. We demonstrate that the mode of programmed cell death, pyroptosis, exists in Drosophila by way of convergent evolution.This thesis brings to light the variation found within the infection process for EPNs as well as the clotting response based on larval age, tissue type, and the maturity of a single cell type. Timing in each of these immune scenarios can give very different indications about the kind of immune response mounted and even the role of an individual cell.

Subject headings

NATURVETENSKAP  -- Biologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences (hsv//eng)
NATURVETENSKAP  -- Biologi -- Immunologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Immunology (hsv//eng)
NATURVETENSKAP  -- Biologi -- Mikrobiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Microbiology (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Cell- och molekylärbiologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Cell and Molecular Biology (hsv//eng)

Keyword

Drosophila melanogaster
Heterorhabditis bacteriophora
Photorhabdus luminescens
entomopathogenic nematodes
worms
high-resolution microscopy
time-lapse
infection
kinetics
sepsis
septic wounding
injury
clotting
glutactin
transglutaminase
prophenoloxidase
cell death
pyroptosis
caspase
molekylär biovetenskap
Molecular Bioscience

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view