SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:( azza)
 

Sökning: WFRF:( azza) > Approximation of pl...

Approximation of pluricomplex Green functions : A probabilistic approach

Alghamdi, Azza (författare)
Uppsala universitet,Matematiska institutionen
Klimek, Maciej, Professor (preses)
Uppsala universitet,Matematiska institutionen
Nyström, Kaj, Professor, 1969- (preses)
Uppsala universitet,Analys och sannolikhetsteori
visa fler...
Zdunik, Anna (opponent)
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland.
visa färre...
 (creator_code:org_t)
ISBN 9789150627145
Uppsala : Department of Mathematics, 2018
Engelska 47 s.
Serie: Uppsala Dissertations in Mathematics, 1401-2049 ; 109
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • This PhD thesis focuses on probabilistic methods of approximation of pluricomplex Green functions and is based on four papers.The thesis begins with a general introduction to the use of pluricomplex Green functions in multidimensional complex analysis and a review of their main properties. This is followed by short description of the main results obtained in the enclosed papers.In Paper I, we study properties of the metric space of pluriregular sets, that is zero sets of continuous pluricomplex Green functions. The best understood non-trivial examples of such sets are composite Julia sets, obtained by iteration of finite families of polynomial mappings in several complex variables. We prove that the so-called chaos game is applicable in the case of such sets. We also visualize some composite Julia sets using escape time functions and Monte Carlo simulation.In Paper II, we extend results in Paper I to the case of infinite compact families of proper polynomials mappings. With composition as the semigroup operation, we generate families of infinite iterated function systems with compact attractors. We show that such attractors can be approximated probabilistically in a manner of the classic chaos game.In Paper III, we study numerical approximation and visualisation of pluricomplex Green functions based on the Monte-Carlo integration. Unlike alternative methods that rely on locating a sequence of carefully chosen finite sets of points satisfying some optimal conditions for approximation purposes, our approach is simpler and more direct by relying on generation of pseudorandom points. We examine numerically the errors of approximation for some simple geometric shapes for which the pluricomplex Green functions are known. If the pluricomplex Green functions are not known, the errors in Monte Carlo integration can be expressed with the aid of statistics in terms of confidence intervals.Finally, in Paper IV, we study how perturbations of an orthonomalization procedure influence the resulting approximate Bergman functions. To this end we consider the concept of near orthonormality of a finite set of vectors in an inner product space, understood as closeness of the Gram matrix of those vectors to the identity matrix. We provide estimates for the errors resulting from using nearly orthogonal bases instead of orthogonal ones. The motivation for this work comes from Paper III: when Gram matrices are calculated via Monte Carlo integration, the outcomes of standard orthogonalisation algorithms are nearly orthonormal bases.

Ämnesord

NATURVETENSKAP  -- Matematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics (hsv//eng)

Nyckelord

pluricomplex Green function
pluriregular sets
Bernstein-Markov property
Bergman function
nearly orthonormal polynomials
orthogonal polynomials
Monte Carlo simulation
composite Julia sets
Julia sets
iterated function systems
the chaos game.

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy