SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:su-223152"
 

Search: id:"swepub:oai:DiVA.org:su-223152" > Conformational pref...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Dorst, Kevin M. (author)

Conformational preferences at the glycosidic linkage of disaccharides in solution as deduced from NMR experiments and MD simulations: comparison to crystal structures

  • BookEnglish

Publisher, publication year, extent ...

  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:su-223152
  • https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-223152URI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:vet swepub-contenttype
  • Subject category:ovr swepub-publicationtype

Notes

  • Glycans are central to information content and regulation in biological systems. These carbohydrate molecules are active either as oligo- or polysaccharides, often in the form of glycoconjugates. The monosaccharide entities are joined by glycosidic linkages and stereochemical arrangements are of utmost importance in determining conformation and flexibility of saccharides. The conformational preferences and population distributions at the glycosidic torsion angles f and y have been investigated for three disaccharides where the substitution takes place at a secondary alcohol, viz., in a-l-Fucp-(1→3)-β-d-Glcp-OMe, a-l-Fucp-(1→3)-a-d-Galp-OMe and a-d-Glcp-(1→4)-a-d-Galp-OMe. Stereochemical differences at or adjacent to the glycosidic linkage were explored by solution state NMR spectroscopy using one‑dimensional 1H,1H-NOESY NMR experiments to obtain transglycosidic proton‑proton distances and one- and two-dimensional heteronuclear NMR experiments to obtain 3JCH transglycosidic coupling constants related to torsion angles f and y. Computed effective proton‑proton distances from molecular dynamics (MD) simulations showed excellent agreement to experimentally derived distances for the a-(1→3)-linked disaccharides and revealed that for the bimodal distribution at the y torsion angle for the a-(1→4)-linked disaccharide experiment and simulation were at variance with each other, calling for further force field developments. The MD simulations disclosed a highly intricate inter‑residue hydrogen bonding pattern for the a-(1→4)-linked disaccharide, including a nonconventional hydrogen bond between H5' in the glucosyl residue and O3 in the galactosyl residue, supported by a large downfield 1H NMR chemical shift displacement compared to a-d-Glcp-OMe. Comparison of population distributions of the glycosidic torsion angles f and y in the disaccharide entities to those of corresponding crystal structures highlighted the potential importance of solvation on the preferred conformation. 

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Widmalm, Göran (author)

Internet link

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Dorst, Kevin M.
Widmalm, Göran
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Chemical Science ...
and Organic Chemistr ...
By the university
Stockholm University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view