SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Kylander malin)
 

Sökning: WFRF:(Kylander malin) > Paleoclimate and se...

Paleoclimate and seasonality on Sumatra during the Late Glacial and Holocene : Insights from biomarkers and climate model simulations

Hällberg, Lars Petter, PhD student, 1988- (författare)
Stockholms universitet,Institutionen för geologiska vetenskaper
Kylander, Malin, Associate professor (preses)
Stockholms universitet,Institutionen för geologiska vetenskaper
Schenk, Frederik, Doctor (preses)
Stockholms universitet,Institutionen för geologiska vetenskaper
visa fler...
Smittenberg, Rienk, Doctor (preses)
Swiss Federal Institute for Forest, Snow and Landscape Research
Naafs, David, Associate Professor (opponent)
Organic Geochemistry Unit, School of Chemistry, Cabot Institute for the Environment, University of Bristol, Bristol, UK
visa färre...
 (creator_code:org_t)
ISBN 9789180147156
Stockholm : Department of Geological Sciences, Stockholm University, 2024
Engelska 56 s.
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Deep atmospheric convection in the Indo-Pacific Warm Pool (IPWP) is a key driver of the Hadley and Walker Circulations that modulate the Asian-Australian monsoons and the El Niño Southern Oscillation (ENSO). Temperature and rainfall seasonality, i.e., the amount and timing of precipitation, impacts ecosystems, carbon content in soils and peats, and human livelihoods. Yet, past climate variability in the IPWP is poorly constrained. The Maritime Continent, located in the center of the IPWP remains a “quantification desert”, with a scarcity of terrestrial paleoenvironmental reconstructions.This thesis investigates the evolution of temperature, precipitation amount and seasonality over the Late Glacial (14.7-11.7 ka BP) and the Holocene (last 11.7 ka). This is achieved by combining climate model simulations and lipid biomarker analyses of terrestrial peat archives from Sumatra. Temperature and seasonality were explored by analysis of climate model simulations for the Late Glacial and Holocene. Microbial membrane-derived glycerol dialkyl glycerol tetraethers (GDGTs) were investigated as temperature and hydro-environmental proxies. Using n-alkane distributions, the abundance of algae, aquatic and terrestrial plants was reconstructed and linked to past hydroclimate variability. The hydrogen isotopic composition (dD) of the n-alkanes was then used to disentangle seasonal and annual precipitation signals.The analysis of Sumatran GDGTs revealed that bacterial community shifts of the GDGT producers had a strong impact on reconstructed temperatures, and that H-shaped branched GDGT isomers are good tracers of such community shifts. The branched GDGT temperature reconstruction indicates gradual warming over the Holocene, consistent with models and nearby marine records.Rainfall seasonality has shifted drastically over the studied time frame, in particular during the end of the Late Glacial, and between 6-4.2 ka BP. The Late Glacial climate was characterized by a much stronger seasonality, with a cold and dry Asian winter monsoon suppressing atmospheric deep convection in the region. The resulting mean state conditions resembled the atmospheric circulation and sea surface temperature patterns during extreme El Niño events in the modern climate. The Mid-Holocene (6-4.2 ka BP) was characterized by increased seasonality, with alternating droughts and heavy rains due to strong monsoon precipitation and longer dry season.The Early Holocene was relatively dry. Wetter conditions started around 7-6 ka BP, and peaked at 4.5-3 ka BP. This is consistent with a dD reconstruction on Sulawesi, but 1.5-2 ka later than indicated by speleothem oxygen isotopic (d18O) records on Sumatra and Sulawesi. However, the speleothem records closely follow algal dD values, interpreted here as a seasonal monsoon signal, suggesting that speleothems in the region reflect monsoonal precipitation rather than an annual signal. Rapid drying was reconstructed for the Late Holocene, starting at 3 ka BP, co-occurring with the onset of strengthened ENSO variability. The Late Holocene drying caused drying out and decomposition of peat in one of the studied cores which resulted in a hiatus of 1700 years, highlighting the importance of hydroclimate for peat and carbon accumulation in tropical wetlands.In conclusion, this dissertation enhances our understanding of past climatic conditions in the Maritime Continent and contributes toward constraining the evolution of temperature, precipitation, and monsoon-driven seasonality over the Late Glacial and Holocene in a region that has a scarce coverage of paleoclimate proxy information. Additionally, the methodological aspects of this thesis advance terrestrial paleoclimatological reconstructions by constraining source shifts of GDGTs and proposing a novel approach to disentangle seasonal and annual precipitation signals from dD.

Ämnesord

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Klimatforskning (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Climate Research (hsv//eng)

Nyckelord

Holocene
Late Glacial
biomarkers
organic geochemistry
climate model
hydrogen isotopes
stable isotopes
paleoclimate
alkanes
GDGT
brGDGT
H-GDGT
bacterial community shifts
paleothermometry
precipitation reconstruction
peat
geokemi
Geochemistry

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy