SwePub
Sök i LIBRIS databas

  Extended search

L773:2055 026X OR L773:2055 0278
 

Search: L773:2055 026X OR L773:2055 0278 > (2024) > Hotspots of biogeoc...

Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands

Reine, Max Mallen Cooper (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skogens ekologi och skötsel,Department of Forest Ecology and Management
 (creator_code:org_t)
 
2024
2024
English.
In: Nature Plants. - 2055-026X .- 2055-0278. ; 10, s. 760–770-
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.In global drylands, soils tend to be more fertile beneath tree, shrub and grass islands. Soil fertility was greater beneath taller and wider plants but was unaffected by either grazing pressure or the type of herbivore.

Subject headings

NATURVETENSKAP  -- Biologi -- Botanik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Botany (hsv//eng)
LANTBRUKSVETENSKAPER  -- Lantbruksvetenskap, skogsbruk och fiske -- Markvetenskap (hsv//swe)
AGRICULTURAL SCIENCES  -- Agriculture, Forestry and Fisheries -- Soil Science (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Reine, Max Malle ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Botany
AGRICULTURAL SCIENCES
AGRICULTURAL SCI ...
and Agriculture Fore ...
and Soil Science
Articles in the publication
Nature Plants
By the university
Swedish University of Agricultural Sciences

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view