SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Julkunen Heikki)
 

Sökning: WFRF:(Julkunen Heikki) > Strain-dependent mo...

Strain-dependent modulation of ultrasound speed in articular cartilage under dynamic compression.

Lötjönen, Pauno (författare)
Department of Physics, University of Kuopio, Kuopio, Finland
Julkunen, Petro (författare)
Department of Physics, University of Kuopio, Kuopio, Finland
Töyräs, Juha (författare)
Department of Physics, University of Kuopio, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
visa fler...
Lammi, Mikko, 1961- (författare)
Institute of Biomedicine, Anatomy, University of Kuopio, Kuopio, Finland: Department of Biosciences, Applied Biotechnology and Biocenter Kuopio, University of Kuopio, Kuopio, Finland,Chondrogenic and Osteogenic Differentiation Group
Jurvelin, Jukka (författare)
Department of Physics, University of Kuopio, Kuopio, Finland; Department of Physics, University of Kuopio, Kuopio, Finland
Nieminen, Heikki (författare)
Department of Physics, University of Kuopio, Kuopio, Finland
visa färre...
 (creator_code:org_t)
Elsevier, 2009
2009
Engelska.
Ingår i: Ultrasound in Medicine and Biology. - : Elsevier. - 1879-291X .- 0301-5629. ; 35:7, s. 1177-1184
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Mechanical properties of articular cartilage may be determined by means of mechano-acoustic indentation, a clinically feasible technique for cartilage diagnostics. Unfortunately, ultrasound speed varies in articular cartilage during mechanical compression. This can cause significant errors to the measured mechanical parameters. In this study, the strain-dependent variation in ultrasound speed was investigated during dynamic compression. In addition, we estimated errors that were induced by the variation in ultrasound speed on the mechano-acoustically measured elastic properties of the tissue. Further, we validated a computational method to correct these errors. Bovine patellar cartilage samples (n = 7) were tested under unconfined compression. Strain-dependence of ultrasound speed was determined under different compressive strains using an identical strain-rate. In addition, the modulation of ultrasound speed was simulated using the transient compositional and structural changes derived from fibril-reinforced poroviscoelastic (FRPVE) model. Experimentally, instantaneous compressive strain modulated the ultrasound speed (p < 0.05) significantly. The decrease of ultrasound speed was found to change nonlinearly as a function of strain. Immediately after the ramp loading ultrasound speed was found to be changed -0.94%, -1.49%, -1.84%, -1.87%, -1.89% and -2.15% at the strains of 2.4%, 4.9%, 7.3%, 9.7%, 12.1% and 14.4%, respectively. The numerical simulation revealed that the compression-related decrease in ultrasound speed induces significant errors in the mechano-acoustically determined strain (39.7%) and dynamic modulus (72.1%) at small strains, e.g., at 2.4%. However, at higher strains, e.g., at 14.4%, the errors were smaller, i.e., 12.6% for strain and 14.5% for modulus. After the proposed computational correction, errors related to ultrasound speed were decreased. By using the correction, with e.g., 2.4% strain, errors in strain and modulus were decreased from 39.7% to 7.2% and from 72.1% to 35.3%, respectively. The FRPVE model, addressing the changes in fibril orientation and void ratio during compression, showed discrepancy of less than 1% between the predicted and measured ultrasound speed during the ramp compression.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Medicinsk apparatteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Medical Equipment Engineering (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Ortopedi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Orthopaedics (hsv//eng)

Nyckelord

Articular cartilage
osteoarthritis
elastography
mechanical indentation
ultrasound speed
collagen
void ratio
finite element modeling
biomechanics
biomekanik
fysik
Physics
ortopedi
Orthopaedics

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy