SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:umu-112474"
 

Search: id:"swepub:oai:DiVA.org:umu-112474" > The forthcoming EIS...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Pellinen-Wannberg, Asta,1953-Umeå universitet,Institutionen för fysik,Swedish Institute of Space Physics, Kiruna, Sweden (author)

The forthcoming EISCAT_3D as an extra-terrestrial matter monitor

  • Article/chapterEnglish2016

Publisher, publication year, extent ...

  • Elsevier,2016
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:umu-112474
  • https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-112474URI
  • https://doi.org/10.1016/j.pss.2015.10.009DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Special issue: ACM Interrelated
  • It is important to monitor the extra-terrestrial dust flux in the Earth’s environment and into the atmosphere. Meteoroids threaten the infrastructure in space as hypervelocity hits by micron-sized granules continuously degrade the solar panels and other satellite surfaces. Through their orbital elements meteoroids can be associated to the interplanetary dust cloud, comets, asteroids or the interstellar space. The ablation products of meteoroids participate in many physical and chemical processes at dierent layers inthe atmosphere, many of them occurring in the polar regions.High-power large-aperture (HPLA) radars, such as the tristatic EISCAT UHF together with the EISCAT VHF, have been versatile instruments for studying many properties of the meteoroid population, even though they were not initially designed for this purpose. The future EISCAT_3D will comprise a phased-array transmitter and several phased-array receivers distributed in Northern Scandinavia. These will work at 233 MHz centre frequency with power up to 10 MW and run advanced signal processing systems. The facility will in many aspects be superior to its predecessors as the first radar to combine volumetric-, aperture synthesis- and multistatic imaging as well as adaptive experiments. The technical design goals of the radar respond to the scientific requests from the user community. The VHF frequency and the volumetric imaging capacity will increase the collecting volume compared to the earlier UHF, the high transmitter power will increase the sensitivity of the radar, and the interferometry will improve the spatial resolution of the orbit estimates. The facility will be able to observe and define orbits to about 10% of the meteors from the established mass flux distribution that are large or fast enough to produce an ionization mantle around the impacting meteoroid within the collecting volume. The estimated annual mean of about 190 000 orbits per day with EISCAT_3D gives many orders of magnitude higher detected orbit rates than the earlier tristatic UHF radar.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Kero, JohanSwedish Institute of Space Physics, Kiruna, Sweden (author)
  • Häggström, IngemarEISCAT Scientific Association, Kiruna, Sweden (author)
  • Mann, IngridEISCAT Scientific Association, Kiruna, Sweden (author)
  • Tjulin, AndersEISCAT Scientific Association, Kiruna, Sweden (author)
  • Umeå universitetInstitutionen för fysik (creator_code:org_t)

Related titles

  • In:Planetary and Space Science: Elsevier123, s. 33-400032-06331873-5088

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view