SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Rozman Grinberg Inna)
 

Search: WFRF:(Rozman Grinberg Inna) > A unique cysteine-r...

A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover

Loderer, Christoph (author)
Stockholms universitet,Institutionen för biokemi och biofysik,Stockholm university
Jonna, Venkateswara Rao (author)
Umeå universitet,Institutionen för medicinsk kemi och biofysik,Umeå University
Crona, Mikael, 1981- (author)
Stockholms universitet,Institutionen för biokemi och biofysik,Stockholm University
show more...
Rozman Grinberg, Inna (author)
Stockholms universitet,Institutionen för biokemi och biofysik,Stockholm University
Sahlin, Margareta (author)
Stockholms universitet,Institutionen för biokemi och biofysik,Stockholm University
Hofer, Anders (author)
Umeå universitet,Institutionen för medicinsk kemi och biofysik,Umeå University
Lundin, Daniel, 1965- (author)
Stockholms universitet,Institutionen för biokemi och biofysik,Stockholm University
Sjöberg, Britt-Marie (author)
Stockholms universitet,Institutionen för biokemi och biofysik,Stockholm University
show less...
 (creator_code:org_t)
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2017
2017
English.
In: Journal of Biological Chemistry. - : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 0021-9258 .- 1083-351X. ; 292:46, s. 19044-19054
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, used in DNA synthesis and repair. Two different mechanisms help deliver the required electrons to the RNR active site. Formate can be used as reductant directly in the active site, or glutaredoxins or thioredoxins reduce a C-terminal cysteine pair, which then delivers the electrons to the active site. Here, we characterized a novel cysteine-rich C-terminal domain (CRD), which is present in most class II RNRs found in microbes. The NrdJd-type RNR from the bacterium Stackebrandtia nassauensis was used as a model enzyme. We show that the CRD is involved in both higher oligomeric state formation and electron transfer to the active site. The CRD-dependent formation of high oligomers, such as tetramers and hexamers, was induced by addition of dATP or dGTP, but not of dTTP or dCTP. The electron transfer was mediated by an array of six cysteine residues at the very C-terminal end, which also coordinated a zinc atom. The electron transfer can also occur between subunits, depending on the enzyme's oligomeric state. An investigation of the native reductant of the system revealed no interaction with glutaredoxins or thioredoxins, indicating that this class II RNR uses a different electron source. Our results indicate that the CRD has a crucial role in catalytic turnover and a potentially new terminal reduction mechanism and suggest that the CRD is important for the activities of many class II RNRs.

Subject headings

NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)
NATURVETENSKAP  -- Biologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences (hsv//eng)

Keyword

metal ion-protein interaction
oligomerization
oxidation-reduction (redox)
phylogenetics
ribonucleotide reductase
thioredoxin
Biokemi
Biochemistry

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view