SwePub
Sök i LIBRIS databas

  Extended search

(WFRF:(Relton Caroline)) pers:(Sesso Howard D)
 

Search: (WFRF:(Relton Caroline)) pers:(Sesso Howard D) > Microstructure and ...

  • Fang, XingInstitute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China (author)

Microstructure and mechanical properties of the laser welded air-hardening steel joint

  • Article/chapterEnglish2024

Publisher, publication year, extent ...

  • Elsevier BV,2024
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:kth-347624
  • https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-347624URI
  • https://doi.org/10.1016/j.matchar.2024.114048DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • QC 20240703
  • The decrease in mechanical properties of high-strength steel after welding is an important issue affecting the wide application of high-strength steel. Air-hardening steel is a high-strength steel suitable for lower body structural parts such as subframes. Its application process involves welding, hot forming and other processes. The present work investigates the microstructure and mechanical properties of the air-hardening steel laser welded joint that is air-cooled after hot forming in the two-phase zone (800 °C). The microstructure was characterized by electron backscattered diffraction (EBSD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that during hot forming, the welded joint transforms from martensite to ferrite and acicular martensite, and the base metal transforms from ferrite to polygonal martensite and ferrite. The difference in martensite morphology between the welded joint and the base metal is attributed to the nucleation positions of austenite. The structural evolution of the welded joint and the base metal is accompanied with the annihilation and reproduction of dislocations, which results in significant changes in hardness. The hardness value dropped from the highest 430 HV to 271 HV in the welded joint, while increased from the lowest 184 HV to 203 HV in the base metal. After hot forming, the tensile strength of the welded sample is reduced by only 36 MPa, and the total elongation is slightly decreased by about 1.5% compared with the unwelded sample. The welded joint and the base metal have similar plastic deformation capabilities, since the acicular martensite in the welded joint displays good plastic deformation ability, and the dislocation density of the welded joint and the base metal is similar. Overall, the microstructure and dislocation density of the air-hardening steel welded joint after hot forming are similar to those of the base metal, which is responsible for the good mechanical properties of air-hardening steel welded joint.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Wu, Yan xinInstitute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China (author)
  • Yang, XiaoyongKTH,Materialvetenskap,Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China(Swepub:kth)u172ga4c (author)
  • Yang, Yong gangInstitute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China (author)
  • Cheng, LeiInstitute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China (author)
  • Zhang, QiInstitute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China (author)
  • Liu, Xin yueInstitute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China (author)
  • Mi, Zhen liInstitute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China (author)
  • Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, ChinaMaterialvetenskap (creator_code:org_t)

Related titles

  • In:Materials Characterization: Elsevier BV2131044-58031873-4189

Internet link

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view