SwePub
Sök i LIBRIS databas

  Extended search

L773:0886 6236 OR L773:1944 9224
 

Search: L773:0886 6236 OR L773:1944 9224 > Landscape regulatio...

Landscape regulation of bacterial growth efficiency in boreal freshwaters

Berggren, Martin, 1981- (author)
Umeå universitet,Institutionen för ekologi, miljö och geovetenskap
Laudon, Hjalmar, 1966- (author)
Umeå universitet,Institutionen för ekologi, miljö och geovetenskap
Jansson, Mats, 1947- (author)
Umeå universitet,Institutionen för ekologi, miljö och geovetenskap
 (creator_code:org_t)
American Geophysical Union, 2007
2007
English.
In: Global Biogeochemical Cycles. - : American Geophysical Union. - 0886-6236 .- 1944-9224. ; 21
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Allochthonous organic carbon in aquatic systems is metabolized by heterotrophic bacteria, with significant consequences for the biostructure and energy pathways of freshwater ecosystems. The degree to which allochthonous substrates support growth of bacteria is largely dependent on bacterial growth efficiency (BGE), i.e., bacterial production (BP) per unit of assimilated carbon. Here we show how the spatial variability of BGE in the boreal region can be mediated by the distribution of the two dominating landscape elements forest and mires. Using an 11 days bioassay approach, the production and respiration of bacteria were measured in water samples from nine small Swedish streams (64°N 19°E), representing a gradient ranging from organic carbon supplied mainly from peat mires to carbon supplied mainly from coniferous forests. BP was positively correlated to forest coverage (%) of the catchment, while bacterial respiration was similar in all streams. Consequently, BGE showed a strong positive correlation with forest coverage. Partial least square regression showed that BGE was chiefly regulated by qualitative properties of the organic material, indicated by the absorbance ratio a254/a365 plus C/N and C/P ratios. The data suggest that a share of the organic carbon pool, drained mainly from forest soils, had a potential of being incorporated into bacterial biomass with great efficiency. Its potential for supporting growth was probably nutrient regulated as indicated by inorganic nutrient enrichment experiments.

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view