SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Krause E. Tobias)
 

Sökning: WFRF:(Krause E. Tobias) > (2022) > Evolution of longit...

  • Nyongesa, SammyINRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, QC, Laval, Canada (författare)

Evolution of longitudinal division in multicellular bacteria of the Neisseriaceae family

  • Artikel/kapitelEngelska2022

Förlag, utgivningsår, omfång ...

  • 2022-08-22
  • Springer Nature,2022
  • electronicrdacarrier

Nummerbeteckningar

  • LIBRIS-ID:oai:DiVA.org:umu-199023
  • https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-199023URI
  • https://doi.org/10.1038/s41467-022-32260-wDOI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:ref swepub-contenttype
  • Ämneskategori:art swepub-publicationtype

Anmärkningar

  • Rod-shaped bacteria typically elongate and divide by transverse fission. However, several bacterial species can form rod-shaped cells that divide longitudinally. Here, we study the evolution of cell shape and division mode within the family Neisseriaceae, which includes Gram-negative coccoid and rod-shaped species. In particular, bacteria of the genera Alysiella, Simonsiella and Conchiformibius, which can be found in the oral cavity of mammals, are multicellular and divide longitudinally. We use comparative genomics and ultrastructural microscopy to infer that longitudinal division within Neisseriaceae evolved from a rod-shaped ancestor. In multicellular longitudinally-dividing species, neighbouring cells within multicellular filaments are attached by their lateral peptidoglycan. In these bacteria, peptidoglycan insertion does not appear concentric, i.e. from the cell periphery to its centre, but as a medial sheet guillotining each cell. Finally, we identify genes and alleles associated with multicellularity and longitudinal division, including the acquisition of amidase-encoding gene amiC2, and amino acid changes in proteins including MreB and FtsA. Introduction of amiC2 and allelic substitution of mreB in a rod-shaped species that divides by transverse fission results in shorter cells with longer septa. Our work sheds light on the evolution of multicellularity and longitudinal division in bacteria, and suggests that members of the Neisseriaceae family may be good models to study these processes due to their morphological plasticity and genetic tractability.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Weber, Philipp M.Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria; University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria (författare)
  • Bernet, ÈveINRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, QC, Laval, Canada (författare)
  • Pulido, FranciscoINRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, QC, Laval, Canada (författare)
  • Nieves, CeciliaINRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, QC, Laval, Canada (författare)
  • Nieckarz, MartaUmeå universitet,Molekylär Infektionsmedicin, Sverige (MIMS),Umeå Centre for Microbial Research (UCMR),Institutionen för molekylärbiologi (Medicinska fakulteten)(Swepub:umu)mani0619 (författare)
  • Delaby, MarieDépartement de microbiologie, infectiologie et immunologie, Université de Montréal, QC, Montréal, Canada (författare)
  • Viehboeck, TobiasDepartment of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria; University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria; Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria (författare)
  • Krause, NicoleDepartment of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria; University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria (författare)
  • Rivera-Millot, AlexINRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, QC, Laval, Canada (författare)
  • Nakamura, ArnaldoINRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, QC, Laval, Canada (författare)
  • Vischer, Norbert O EBacterial Cell Biology & Physiology, Swammerdam Institute of Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, Netherlands (författare)
  • vanNieuwenhze, MichaelIndiana University, IN, Bloomington, United States (författare)
  • Brun, Yves V.Département de microbiologie, infectiologie et immunologie, Université de Montréal, QC, Montréal, Canada (författare)
  • Cava, FelipeUmeå universitet,Molekylär Infektionsmedicin, Sverige (MIMS),Umeå Centre for Microbial Research (UCMR),Institutionen för molekylärbiologi (Medicinska fakulteten)(Swepub:umu)feca0003 (författare)
  • Bulgheresi, SilviaDepartment of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria (författare)
  • Veyrier, Frédéric JINRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, QC, Laval, Canada (författare)
  • INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, QC, Laval, CanadaDepartment of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria; University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:Nature Communications: Springer Nature13:12041-1723

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy