SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Hamers Timo)
 

Sökning: WFRF:(Hamers Timo) > Computational metho...

Computational methods for assessing chemical risk : focusing on toxicokinetic modelling in zebrafish (danio rerio)

Chelcea, Ioana C., 1994- (författare)
Umeå universitet,Kemiska institutionen
Andersson, Patrik L., Professor (preses)
Umeå universitet,Kemiska institutionen
Hamers, Timo (preses)
Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
visa fler...
Legradi, Jessica (preses)
Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Örn, Stefan (preses)
Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
Vogs, Carolina (preses)
Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
Kramer, Nynke (opponent)
Toxicology Division, Wagener University, The Netherlands
visa färre...
 (creator_code:org_t)
ISBN 9789178559909
Umeå : Umeå University, 2023
Engelska 53 s.
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • New chemicals are constantly produced and large data gaps exist on hazards of currently used industrial chemicals, stressing the need for rapid, ethically sound and cost-efficient hazard assessment methods. Traditional methods for effect assessment based on animal testing, do not meet these requirements and thus the toxicology field has been moving towards the development of new approach methodologies which include in vitro approaches but also computational methods. The current work has mainly focused on computational tools but also employed in vitro and in vivo methodologies for the development and validation of the in silico approaches.We firstly explored chemical variation of emerging chemicals as a basis for selecting sub-groups of per- and polyfluoroalkyl substances (PFASs) and bisphenols for Papers I and II. These compounds can be used for future testing and as case study compounds for in silico tools development. The PFASs selection showed compounds with large differences in structure and highlighted the lack of knowledge for large parts of the PFASs chemical domain. This likely is the main driver of the low predictive accuracy of some current fate models and the need for expanding their applicability domains. In Paper II we investigated the toxicokinetics of selected bisphenols in a commonly studied model organism, the zebrafish (Danio rerio), and developed a physiologically-based toxicokinetic model. Novel data for fish biotransformation was derived and showed lower rates than those measured in humans, providing valuable insight for both model parameterization and for chemical safety assessment using fish. The model also demonstrated the ability to predict and rank hazard of these bisphenols in terms of organ-specific bioaccumulation making it a useful tool for chemical screening and prioritization efforts. The results indicate that bisphenols AP, C and Z as well as tetrabromo bisphenol A may have larger potential for bioaccumulation than the widely used bisphenol A (BPA), indicating that these compounds do not constitute safer industrial substitutions.  Lastly, we present in Paper III the development of a toxicokinetic model for the zebrafish embryo life-stage. Since the zebrafish embryo test is widely applied in toxicology research, the developed model provides a tool to better understand how varying testing conditions may affect dose at target thus providing a means to compare internal effect concentrations. Additionally, we applied the model in combination with data on estrogenic activity in order to rank the relative hazard of investigated bisphenols, which showed that bisphenols AF, C, B and Z may be more hazardous than BPA.Overall the developed computational tools showed good predictive performance and improvements in parameterization, thus providing tools for understanding dose at target and toxicokinetic variation of emerging substances. Furthermore, the thesis presents novel data and findings for per- and polyfluoroalkyl substances and bisphenols, which are environmental pollutants of emerging concern of relevance for future hazard assessments and substitution processes.

Ämnesord

NATURVETENSKAP  -- Kemi -- Annan kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Other Chemistry Topics (hsv//eng)
NATURVETENSKAP  -- Matematik -- Beräkningsmatematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Computational Mathematics (hsv//eng)

Nyckelord

PBTK
Toxicokinetics
Endocrine disruptors
bisphenols
zebrafish
embryo
Toxicology
toxikologi

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy