SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:umu-220012"
 

Sökning: id:"swepub:oai:DiVA.org:umu-220012" > Martian global curr...

  • Wang, Xiao-DongSolar System Physics and Space Technology Programme, Swedish Institute of Space Physics, Kiruna, Sweden (författare)

Martian global current systems and related solar wind energy transfer : hybrid simulation under nominal conditions

  • Artikel/kapitelEngelska2024

Förlag, utgivningsår, omfång ...

  • Oxford University Press,2024
  • electronicrdacarrier

Nummerbeteckningar

  • LIBRIS-ID:oai:DiVA.org:umu-220012
  • https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-220012URI
  • https://doi.org/10.1093/mnras/stad3486DOI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:ref swepub-contenttype
  • Ämneskategori:art swepub-publicationtype

Anmärkningar

  • The magnetized solar wind drives a current system around Mars that maintains its induced magnetosphere. The solar wind also transfers its energy to the atmospheric ions, causing continuous atmospheric erosion, which has a profound impact on the planet’s evolution history. Here, we use Amitis, a Graphics Processing Unit (GPU)-based hybrid plasma model to first reproduce the global pattern of the net electric current and ion currents under an interplanetary magnetic field perpendicular to the solar wind flow direction. The resultant current distribution matches the observations and reveals more details. Using the electric field distribution characterized earlier with the same model, we calculate for the first time the spatial distribution of energy transfer rate to the plasmas in general and to different ion species at Mars. We find out that (1) the solar wind kinetic energy is the dominant energy source that drives Martian induced magnetosphere, (2) the energy flux of the shocked solar wind flows from the magnetic equatorial plane towards the plasma sheet in the induced magnetotail, (3) both the bow shock and the induced magnetospheric boundary are dynamos where plasma energy is transferred to the electromagnetic field, and (4) the planetary ions act as loads and gain energy from the electromagnetic field. The most intense load region is the planetary ion plume. The general pattern of the energy transfer rate revealed in this study is common for induced magnetospheres. Its variabilities with the upstream conditions can provide physical insight into the observed ion escape variabilities.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Fatemi, ShahabUmeå universitet,Institutionen för fysik(Swepub:umu)shfa0016 (författare)
  • Holmström, MatsSolar System Physics and Space Technology Programme, Swedish Institute of Space Physics, Kiruna, Sweden (författare)
  • Nilsson, HansSolar System Physics and Space Technology Programme, Swedish Institute of Space Physics, Kiruna, Sweden (författare)
  • Futaana, YoshifumiSolar System Physics and Space Technology Programme, Swedish Institute of Space Physics, Kiruna, Sweden (författare)
  • Barabash, StasSolar System Physics and Space Technology Programme, Swedish Institute of Space Physics, Kiruna, Sweden (författare)
  • Solar System Physics and Space Technology Programme, Swedish Institute of Space Physics, Kiruna, SwedenInstitutionen för fysik (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:Monthly notices of the Royal Astronomical Society: Oxford University Press527:4, s. 12232-122420035-87111365-2966

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy