SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Kihlberg Jan)
 

Search: WFRF:(Kihlberg Jan) > (2010-2014) > (E)-Alkene and Ethy...

(E)-Alkene and Ethylene Isosteres Substantially Alter the Hydrogen-Bonding Network in Class II MHC Aq/Glycopeptide Complexes and Affect T-Cell Recognition

Andersson, Ida E., 1982- (author)
Umeå universitet,Kemiska institutionen
Batsalova, Tsvetelina (author)
Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet
Haag, Sabrina (author)
Karolinska Institutet
show more...
Dzhambazov, Balik (author)
Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet
Holmdahl, Rikard (author)
Karolinska Institutet
Kihlberg, Jan, 1957- (author)
Umeå universitet,Kemiska institutionen
Linusson, Anna, 1970- (author)
Umeå universitet,Kemiska institutionen
show less...
 (creator_code:org_t)
2011-08-19
2011
English.
In: Journal of the American Chemical Society. - : American Chemical Society. - 0002-7863 .- 1520-5126. ; 133:36, s. 14368-14378
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The structural basis for antigen presentation by class II major histocompatibility complex (MHC) proteins to CD4(+) T-cells is important for understanding and possibly treating autoimmune diseases. In the work described in this paper, (E)-alkene and ethylene amide-bond isosteres were used to investigate the effect of removing hydrogen-bonding possibilities from the CII259-270 glycopeptide, which is bound by the arthritis-associated murine A(q) class II MHC protein. The isostere-modified glycopeptides showed varying and unexpectedly large losses of A(q) binding that could be linked to the dynamics of the system. Molecular dynamics (MD) simulations revealed that the backbone of CII259-270 and the A(q) protein are able to form up to 11 hydrogen bonds, but fewer than this number are present at any one time. Most of the strong hydrogen-bond interactions were formed by the N-terminal part of the glycopeptide, i.e., in the region where the isosteric replacements were made. The structural dynamics also revealed that hydrogen bonds were strongly coupled to each other; the loss of one hydrogen-bond interaction had a profound effect on the entire hydrogen-bonding network. The A(q) binding data revealed that an ethylene isostere glycopeptide unexpectedly bound more strongly to A(q) than the corresponding (E)-alkene, which is in contrast to the trend observed for the other isosteres. Analysis of the MD trajectories revealed that the complex conformation of this ethylene isostere was structurally different and had an altered molecular interaction pattern compared to the other A(q)/glycopeptide complexes. The introduced amide-bond isosteres also affected the interactions of the glycopeptide/A(q) complexes with T-cell receptors. The dynamic variation of the patterns and strengths of the hydrogen-bond interactions in the class II MHC system is of critical importance for the class II MHC/peptide/TCR signaling system.

Subject headings

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Keyword

Chemistry
Kemi

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view