SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Garpebring Anders)
 

Search: WFRF:(Garpebring Anders) > CT substitutes deri...

  • Johansson, Adam,1984-Umeå universitet,Radiofysik (author)

CT substitutes derived from MR images reconstructed with parallel imaging

  • Article/chapterEnglish2014

Publisher, publication year, extent ...

  • 2014-07-15
  • Wiley,2014
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:umu-93051
  • https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-93051URI
  • https://doi.org/10.1118/1.4886766DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Purpose: Computed tomography (CT) substitute images can be generated from ultrashort echo time (UTE) MRI sequences with radial k-space sampling. These CT substitutes can be used as ordinary CT images for PET attenuation correction and radiotherapy dose calculations. Parallel imaging allows faster acquisition of magnetic resonance (MR) images by exploiting differences in receiver coil element sensitivities. This study investigates whether non-Cartesian parallel imaging reconstruction can be used to improve CT substitutes generated from shorter examination times.Methods: The authors used gridding as well as two non-Cartesian parallel imaging reconstruction methods, SPIRiT and CG-SENSE, to reconstruct radial UTE and gradient echo (GE) data into images of the head for 23 patients. For each patient, images were reconstructed from the full dataset and from a number of subsampled datasets. The subsampled datasets simulated shorter acquisition times by containing fewer radial k-space spokes (1000, 2000, 3000, 5000, and 10 000 spokes) than the full dataset (30 000 spokes). For each combination of patient, reconstruction method, and number of spokes, the reconstructed UTE and GE images were used to generate a CT substitute. Each CT substitute image was compared to a real CT image of the same patient.Results: The mean absolute deviation between the CT number in CT substitute and CT decreased when using SPIRiT as compared to gridding reconstruction. However, the reduction was small and the CT substitute algorithm was insensitive to moderate subsampling (≥5000 spokes) regardless of reconstruction method. For more severe subsampling (≤3000 spokes), corresponding to acquisition times less than aminute long, the CT substitute quality was deteriorated for all reconstructionmethods but SPIRiT gave a reduction in the mean absolute deviation of down to 25 Hounsfield units compared to gridding.Conclusions: SPIRiT marginally improved the CT substitute quality for a given number of radial spokes as compared to gridding. However, the increased reconstruction time of non-Cartesian parallel imaging reconstruction is difficult to motivate from this improvement. Because the CT substitute algorithm was insensitive to moderate subsampling, data for a CT substitute could be collected in as little as minute and reconstructed with gridding without deteriorating the CT substitute quality.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Garpebring, AndersUmeå universitet,Radiofysik(Swepub:umu)anga0014 (author)
  • Asklund, ThomasUmeå universitet,Onkologi(Swepub:umu)thas0005 (author)
  • Tufve, NyholmUmeå universitet,Radiofysik(Swepub:umu)tuny0001 (author)
  • Umeå universitetRadiofysik (creator_code:org_t)

Related titles

  • In:Medical physics (Lancaster): Wiley41:8, s. 474-4800094-2405

Internet link

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Johansson, Adam, ...
Garpebring, Ande ...
Asklund, Thomas
Tufve, Nyholm
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Physical Science ...
Articles in the publication
Medical physics ...
By the university
Umeå University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view