SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Rydin Håkan)
 

Sökning: WFRF:(Rydin Håkan) > (2010-2014) > Peatland Bryophytes...

Peatland Bryophytes in a Changing Environment : Ecophysiological Traits and Ecosystem Function

Granath, Gustaf (författare)
Uppsala universitet,Växtekologi och evolution
Rydin, Håkan, Professor (preses)
Uppsala universitet,Växtekologi och evolution
Strengbom, Joachim, Doctor (preses)
Swedish University of Agricultural Sciences, Department of Ecology
visa fler...
Rice, Steven K, Doctor (opponent)
Union College, Department of Biological Sciences
visa färre...
 (creator_code:org_t)
ISBN 9789155482497
Uppsala : Acta Universitatis Upsaliensis, 2012
Engelska 39 s.
Serie: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 889
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Peatlands are peat forming ecosystems in which not fully decomposed plant material builds up the soil. The sequestration of carbon into peat is mainly associated with the bryophyte genus Sphagnum (peat mosses), which dominate and literally form most peatlands. The responses of Sphagnum to environmental change help us to understand peatland development and function and to predict future changes in a rapidly changing world. In this thesis, the overarching aim was to use ecophysiological traits to investigate mechanisms behind the response of Sphagnum to elevated N deposition, and, processes connected to ecosystem shift and ecosystem function of peatlands. Regarding elevated N deposition, three experiments were performed at different scales (country-wide to greenhouse). Independent of scale and species, apical tissue N concentration increased with increasing N input until N saturation was reached. Maximum photosynthetic rate, a trait evaluating photosynthetic capacity, increased with N input and could be well predicted by tissue N concentration. Thus, the physiological responses of Sphagnum to N deposition are often positive and I found no evidence of toxic effects. Production did, however, not increase with N input, and results of the N:P ratio suggested that P limitation, and possibly other elements, might hamper growth under high N input. The effect of P limitation was, in contrast to current view, most pronounced in fast growing species indicating species specific responses to nutrient imbalance. I explored the puzzling, but historically frequently occurring, rich fen to bog ecosystem shift; a shift from a species-rich ecosystem dominated by brown mosses, to a species-poor one with greater carbon storage that is Sphagnum-dominated. The bog-dwelling species of Sphagnum grew well, to our surprise, when in contact with rich fen water but was not a strong competitor compared to rich fen Sphagnum species. If submerged under rich fen water (high pH), the bog Sphagnum species died while rich fen species of Sphagnum were unaffected. These results show that differences in two physiological traits (growth rate and tolerance to flooding) among species, can explain when a peatland ecosystem shift might occur. In the last study, the function of peatlands was related to trade-offs between traits and allometric scaling in Sphagnum. Results suggested that growth strategies are determined by the distribution of Sphagnum relative to the water table in order to minimize periods with suboptimal hydration. Allometric analyses stressed the importance of resource allocation among and within shoots (apical part vs. stem), although the allocation patterns in Sphagnum were not always consistent with those of vascular plants. Interestingly, data indicated a trade-off between photosynthetic rate and decomposition rate among Sphagnum species.

Ämnesord

NATURVETENSKAP  -- Biologi -- Ekologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Ecology (hsv//eng)

Nyckelord

allometric scaling
chlorophyll fluorescence
competition
decomposition
flooding
mire
N concentration
nitrogen deposition
photosynthesis
succession
stoichiometry
Ecological Botany
Ekologisk botanik

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy