SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Mathieu Lucie)
 

Search: WFRF:(Mathieu Lucie) > Dykes, cups, saucer...

Dykes, cups, saucers and sills : analogue experiments on magma intrusion into brittle rocks

Mathieu, Lucie (author)
de Vries, Benjamin van Wyk (author)
Holohan, Eoghan (author)
show more...
Troll, Valentin (author)
Uppsala universitet,Institutionen för geovetenskaper,Trinity Coll Dublin, Dept Geol, Dublin 2, Ireland
show less...
 (creator_code:org_t)
Elsevier BV, 2008
2008
English.
In: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 271:1-4, s. 1-13
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Magma is transported in the crust by blade-like intrusions such as dykes, sills, saucers, and also collects in thicker laccoliths, lopoliths and plutons. Recently, the importance and great number of shallow (< ;5 km) saucer-shaped intrusions has been recognized. Lopoliths and cup-shaped intrusions have also been reported in many geological contexts. Our field observations indicate that many intrusions, especially those emplaced into breccias or fractured rocks, have bulging, lobate margins and have shear faults at their bulbous terminations. Such features suggest that magma can propagate along a self-induced shear fault rather than a hydraulic tension-fracture. To investigate this we use analogue models to explore intrusion propagation in a brittle country rock. The models consist of the injection of analogue magma (honey or Golden syrup) in a granular material (sand or sieved ignimbrite) that is a good analogue for brittle or brecciated rocks. These models have the advantage (over other models that use gelatin) to well represent the properties of brittle materials by allowing both shear-faults and tension fractures to be produced at suitable stresses. In our experiments we mainly obtain vertical dykes and inverted-cone like structures that we call cup-shaped intrusions. Dykes bifurcate into cup-shaped intrusions at depths depending on their viscosity. All cup-shaped intrusions uplift a central block. By injecting against a vertical glass plate we obtain detailed observations of the intrusion propagation style. We observe that dykes commonly split and produce cup-shaped intrusions near the surface and that shear zone-related intrusions develop at the dyke tip. We conclude that many dykes propagate as a viscous indenter resulting from shear failure of host rock rather than tensional hydraulic fracturing of host rocks. The shear propagation model provides an explanation for the shape and formation of cup-shaped intrusions, saucer-sills and lopoliths.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Geologi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geology (hsv//eng)

Keyword

dykes
magma
cup-shaped-intrusions
analogue models
viscous indenter
Solid earth geology and petrology
Berggrundsgeologi och petrologi

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Mathieu, Lucie
de Vries, Benjam ...
Holohan, Eoghan
Troll, Valentin
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
and Geology
Articles in the publication
Earth and Planet ...
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view