SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:uu-171491"
 

Sökning: onr:"swepub:oai:DiVA.org:uu-171491" > Multi-scale Inferen...

Multi-scale Inference of Interaction Rules in Animal Groups Using Bayesian Model Selection

Mann, Richard P. (författare)
Uppsala universitet,Analys och tillämpad matematik
Perna, Andrea (författare)
Uppsala universitet,Analys och tillämpad matematik
Strömbom, Daniel (författare)
Uppsala universitet,Analys och tillämpad matematik
visa fler...
Garnett, Roman (författare)
Herbert-Read, James E. (författare)
Sumpter, David J. T. (författare)
Uppsala universitet,Analys och tillämpad matematik
Ward, Ashley J. W. (författare)
visa färre...
 (creator_code:org_t)
2012-01-05
2012
Engelska.
Ingår i: PloS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 8:1, s. e1002308-
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis). We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture fine scale rules of interaction, which are primarily mediated by physical contact. Conversely, the Markovian self-propelled particle model captures the fine scale rules of interaction but fails to reproduce global dynamics. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy