SwePub
Sök i LIBRIS databas

  Utökad sökning

(L773:0956 540X) srt2:(2010-2014)
 

Sökning: (L773:0956 540X) srt2:(2010-2014) > A new numerical met...

A new numerical method to calculate inhomogeneous and time dependent large deformations of two-dimensional geodynamic flows with application to diapirism

Fuchs, Lukas (författare)
Uppsala universitet,Mineralogi, petrologi och tektonik
Schmeling, Harro (författare)
Goethe-University, Institute of Geoscience, Frankfurt am Main, Germany
 (creator_code:org_t)
2013-05-09
2013
Engelska.
Ingår i: Geophysical Journal International. - : Oxford University Press (OUP). - 0956-540X .- 1365-246X. ; 194:2, s. 623-639
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • A key to understand many geodynamic processes is studying the associated large deformation fields. Finite deformation can be measured in the field by using geological strain markers giving the logarithmic strain f = log 10(R), where R is the ellipticity of the strain ellipse. It has been challenging to accurately quantify finite deformation of geodynamic models for inhomogeneous and time-dependent large deformation cases. We present a new formulation invoking a 2-D marker-in-cell approach. Mathematically, one can describe finite deformation by a coordinate transformation to a Lagrangian reference frame. For a known velocity field the deformation gradient tensor, F, can be calculated by integrating the differential equation DtFij = LikFkj, where L is the velocity gradient tensor and Dt the Lagrangian derivative. The tensor F contains all information about the minor and major semi-half axes and orientation of the strain ellipse and the rotation. To integrate the equation centrally in time and space along a particle's path, we use the numerical 2-D finite difference code FDCON in combination with a marker-in-cell approach. For a sufficiently high marker density we can accurately calculate F for any 2-D inhomogeneous and time-dependent creeping flow at any point for a deformation f up to 4. Comparison between the analytical and numerical solution for the finite deformation within a Poiseuille–Couette flow shows an error of less than 2 per cent for a deformation up to f = 1.7. Moreover, we determine the finite deformation and strain partitioning within Rayleigh–Taylor instabilities (RTIs) of different viscosity and layer thickness ratios. These models provide a finite strain complement to the RTI benchmark of van Keken et al. Large finite deformation of up to f = 4 accumulates in RTIs within the stem and near the compositional boundaries. Distinction between different stages of diapirism shows a strong correlation between a maximum occurring deformation of f = 1, 3 and 4, and the early, intermediate and late stages of diapirism, respectively. Furthermore, we find that the overall strain of a RTI is concentrated in the less viscous regions. Thus, spatial distributions and magnitudes of finite deformation may be used to identify stages and viscosity ratios of natural cases.

Ämnesord

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Multidisciplinär geovetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geosciences, Multidisciplinary (hsv//eng)

Nyckelord

Numerical modelling
Diapirism
Finite Deformation
Dynamics of lithosphere and mantle
Diapir and diapirism
convection currents
mantle plumes
Geovetenskap med inriktning mot mineralogi, petrologi och tektonik
Earth Science with specialization in Mineral Chemistry, Petrology and Tectonics

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Fuchs, Lukas
Schmeling, Harro
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Geovetenskap och ...
och Multidisciplinär ...
Artiklar i publikationen
Geophysical Jour ...
Av lärosätet
Uppsala universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy