SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Holmberg D)
 

Sökning: WFRF:(Holmberg D) > (2010-2014) > Deriving the charac...

Deriving the characteristics of warm electrons (100-500 eV) in the magnetosphere of Saturn with the Cassini Langmuir probe

Gamier, P. (författare)
Holmberg, Mika K. G. (författare)
Uppsala universitet,Institutet för rymdfysik, Uppsalaavdelningen
Wahlund, J. -E (författare)
visa fler...
Lewis, G. R. (författare)
Schippers, P. (författare)
Coates, A. (författare)
Gurnett, D. A. (författare)
Waite, J. H. (författare)
Dandouras, I. (författare)
visa färre...
 (creator_code:org_t)
Elsevier BV, 2014
2014
Engelska.
Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 104, s. 173-184
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Though Langmuir probes (LP) are designed to investigate cold plasma regions (e.g. ionospheres), a recent analysis revealed a strong sensitivity of the Cassini LP measurements to hundreds of eV electrons. These warm electrons impact the surface of the probe and generate a significant current of secondary electrons, that impacts both the DC level and the slope of the current-voltage curve of the LP (for negative potentials) through energetic contributions that may be modeled with a reasonable precision. We show here how to derive information about the incident warm electrons from the analysis of these energetic contributions, in the regions where the cold plasma component is small with an average temperature in the range similar to [100-500] eV. First, modeling the energetic contributions (based on the incident electron flux given by a single anode of the CAPS spectrometer) allows us to provide information about the pitch angle anisotropies of the incident hundreds of eV electrons. The modeling reveals indeed sometimes a large variability of the estimated maximum secondary electron yield (which is a constant for a surface material) needed to reproduce the observations. Such dispersions give evidence for strong pitch angle anisotropies of the incident electrons, and using a functional form of the pitch angle distribution even allows us to derive the real peak angle of the distribution. Second, rough estimates of the total electron temperature may be derived in the regions where the warm electrons are dominant and thus strongly influence the LP observations, i.e. when the average electron temperature is in the range similar to [100-500] eV. These regions may be identified from the LP observations through large positive values of the current-voltage slope at negative potentials. The estimated temperature may then be used to derive the electron density in the same region, with estimated densities between similar to 0.1 and a few particles/cm(3) (cc). The derived densities are in better agreement with the CAPS measurements than the values derived from the proxy technique (Morooka et al., 2009) based on the floating potential of the LP. Both the electron temperature and the density estimates lie outside the classical capabilities of the LP, which are essentially n(e) > 5 cc and T-e <5 eV at Saturn. This approximate derivation technique may be used in the regions where the cold plasma component is small with an average temperature in the range similar to [100-500] eV, which occurs often in the L range 6.4-9.4 R-S when Cassini is off the equator, but may occur anywhere in the magnetosphere. This technique may be all the more interesting since the CAPS instrument was shut down, and, though it cannot replace the CAPS instrument, the technique can provide useful information about the electron moments, with probably even better estimates than CAPS in some cases (when the plasma is strongly anisotropic). Finally, a simple modeling approach allows us to predict the impact of the energetic contributions on LP measurements in any plasma environment whose characteristics (density, temperature, etc.) are known. LP observations may thus be influenced by warm electrons in several planetary plasma regions in the solar system, and ambient magnetospheric electron density and temperature could be estimated in some of them (e.g. around several galilean satellites) through the use of Langmuir probes.

Ämnesord

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Nyckelord

Langmuir probe
Cassini
Electron density
Electron temperature
Energetic plasma
Pitch angle anisotropies

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy