SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Sa'ar A.)
 

Search: WFRF:(Sa'ar A.) > Serendipitous Disco...

Serendipitous Discovery of a Dwarf Nova in the Kepler Field Near the G Dwarf Kic 5438845

Brown, Alexander (author)
Neff, James E. (author)
Ayres, Thomas R. (author)
show more...
Kowalski, Adam (author)
Hawley, Suzanne (author)
Berdyugina, Svetlana (author)
Harper, Graham M. (author)
Korhonen, Heidi (author)
Piskunov, Nikolai (author)
Uppsala universitet,Institutionen för fysik och astronomi
Saar, Steven (author)
Walkowicz, Lucianne (author)
Wells, Mark A. (author)
show less...
 (creator_code:org_t)
2015-01-19
2015
English.
In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 149:2
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The Kepler satellite provides a unique window into stellar temporal variability by observing a wide variety of stars with multi-year, near-continuous, high precision, optical photometric time series. While most Kepler targets are faint stars with poorly known physical properties, many unexpected discoveries should result from a long photometric survey of such a large area of sky. During our Kepler Guest Observer programs that monitored late-type stars for starspot and flaring variability, we discovered a previously unknown dwarf nova that lies within a few arcseconds of the mid-G dwarf star KIC 5438845. This dwarf nova underwent nine outbursts over a 4 year time span. The two largest outbursts lasted similar to 17-18 days and show strong modulations with a 110.8 minute period and a declining amplitude during the outburst decay phase. These properties are characteristic of an SU UMa-type cataclysmic variable. By analogy with other dwarf nova light curves, we associate the 110.8 minute (1.847 hr) period with the superhump period, close to but slightly longer than the orbital period of the binary. No precursor outbursts are seen before the super-outbursts and the overall super-outburst morphology corresponds to Osaki & Meyer "Case B" outbursts, which are initiated when the outer edge of the disk reaches the tidal truncation radius. "Case B" outbursts are rare within the Kepler light curves of dwarf novae. The dwarf nova is undergoing relatively slow mass transfer, as evidenced by the long intervals between outbursts, but the mass transfer rate appears to be steady, because the smaller "normal" outbursts show a strong correlation between the integrated outburst energy and the elapsed time since the previous outburst. At super-outburst maximum the system was at V similar to 18, but in quiescence it is fainter than V similar to 22, which will make any detailed quiescent follow-up of this system difficult.

Subject headings

NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)

Keyword

stars: dwarf novae
stars: individual (KIC 5438845)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view