SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Arjan J. Koning)
 

Search: WFRF:(Arjan J. Koning) > (2016) > Sampling of systema...

Sampling of systematic errors to estimate likelihood weights in nuclear data uncertainty propagation

Helgesson, Petter, 1986- (author)
Uppsala universitet,Tillämpad kärnfysik,Nuclear Reactions
Sjöstrand, Henrik (author)
Uppsala universitet,Tillämpad kärnfysik,Nuclear Reactions
J. Koning, Arjan (author)
Uppsala universitet,Tillämpad kärnfysik,IAEA,Nuclear reaction group
show more...
Rydén, Jesper (author)
Uppsala universitet,Tillämpad matematik och statistik
Rochman, Dimitri (author)
Paul Scherrer Institute PSI, Villigen, Switzerland
Alhassan, Erwin (author)
Uppsala universitet,Tillämpad kärnfysik,Nuclear Reactions
Pomp, Stephan (author)
Uppsala universitet,Tillämpad kärnfysik,Nuclear Reactions
show less...
 (creator_code:org_t)
Elsevier, 2016
2016
English.
In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; 807, s. 137-149
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • In methodologies for nuclear data (ND) uncertainty assessment and propagation based on random sampling, likelihood weights can be used to infer experimental information into the distributions for the ND. As the included number of correlated experimental points grows large, the computational time for the matrix inversion involved in obtaining the likelihood can become a practical problem. There are also other problems related to the conventional computation of the likelihood, e.g., the assumption that all experimental uncertainties are Gaussian. In this study, a way to estimate the likelihood which avoids matrix inversion is investigated; instead, the experimental correlations are included by sampling of systematic errors. It is shown that the model underlying the sampling methodology (using univariate normal distributions for random and systematic errors) implies a multivariate Gaussian for the experimental points (i.e., the conventional model). It is also shown that the likelihood estimates obtained through sampling of systematic errors approach the likelihood obtained with matrix inversion as the sample size for the systematic errors grows large. In studied practical cases, it is seen that the estimates for the likelihood weights converge impractically slowly with the sample size, compared to matrix inversion. The computational time is estimated to be greater than for matrix inversion in cases with more experimental points, too. Hence, the sampling of systematic errors has little potential to compete with matrix inversion in cases where the latter is applicable. Nevertheless, the underlying model and the likelihood estimates can be easier to intuitively interpret than the conventional model and the likelihood function involving the inverted covariance matrix. Therefore, this work can both have pedagogical value and be used to help motivating the conventional assumption of a multivariate Gaussian for experimental data. The sampling of systematic errors could also be used in cases where the experimental uncertainties are not Gaussian, and for other purposes than to compute the likelihood, e.g., to produce random experimental data sets for a more direct use in ND evaluation.

Subject headings

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Keyword

Nuclear data
Uncertainty propagation
Experimental correlations
Systematic uncertainty
Total Monte Carlo
Fysik med inriktning mot tillämpad kärnfysik
Physics with specialization in Applied Nuclear Physics

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view