SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Davari Mahdad)
 

Search: WFRF:(Davari Mahdad) > Hierarchical privat...

Hierarchical private/shared classification : The key to simple and efficient coherence for clustered cache hierarchies

Ros, Alberto (author)
Univ Murcia, Dept Comp Engn, E-30001 Murcia, Spain,UART
Davari, Mahdad (author)
Uppsala universitet,Datorarkitektur och datorkommunikation,UART
Kaxiras, Stefanos (author)
Uppsala universitet,Datorarkitektur och datorkommunikation,UART
 (creator_code:org_t)
IEEE Computer Society Digital Library, 2015
2015
English.
In: Proc. 21st International Symposium on High Performance Computer Architecture. - : IEEE Computer Society Digital Library. - 9781479989300 ; , s. 186-197
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • Hierarchical clustered cache designs are becoming an appealing alternative for multicores. Grouping cores and their caches in clusters reduces network congestion by localizing traffic among several hierarchical levels, potentially enabling much higher scalability. While such architectures can be formed recursively by replicating a base design pattern, keeping the whole hierarchy coherent requires more effort and consideration. The reason is that, in hierarchical coherence, even basic operations must be recursive. As a consequence, intermediate-level caches behave both as directories and as leaf caches. This leads to an explosion of states, protocol-races, and protocol complexity. While there have been previous efforts to extend directory-based coherence to hierarchical designs their increased complexity and verification cost is a serious impediment to their adoption. We aim to address these concerns by encapsulating all hierarchical complexity in a simple function: that of determining when a data block is shared entirely within a cluster (sub-tree of the hierarchy) and is private from the outside. This allows us to eliminate complex recursive operations that span the hierarchy and instead employ simple coherence mechanisms such as self-invalidation and write-through-now restricted to operate within the cluster where a data block is shared. We examine two inclusivity options and discuss the relation of our approach to the recently proposed Hierarchical-Race-Free (HRF) memory models. Finally, comparisons to a hierarchical directory-based MOESI, VIPS-M, and TokenCMP protocols show that, despite its simplicity our approach results in competitive performance and decreased network traffic.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Datorsystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Computer Systems (hsv//eng)

Publication and Content Type

ref (subject category)
kon (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Ros, Alberto
Davari, Mahdad
Kaxiras, Stefano ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Electrical Engin ...
and Computer Systems
Articles in the publication
Proc. 21st Inter ...
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view