SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:uu-284085"
 

Search: id:"swepub:oai:DiVA.org:uu-284085" > Stochastic Simulati...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Meinecke, Lina,1986-Uppsala universitet,Avdelningen för beräkningsvetenskap,Numerisk analys (author)

Stochastic Simulation of Multiscale Reaction-Diffusion Models via First Exit Times

  • BookEnglish2016

Publisher, publication year, extent ...

  • Uppsala :Acta Universitatis Upsaliensis,2016
  • 53 s.
  • electronicrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:uu-284085
  • ISBN:9789155495824
  • https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284085URI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:vet swepub-contenttype
  • Subject category:dok swepub-publicationtype

Notes

  • Mathematical models are important tools in systems biology, since the regulatory networks in biological cells are too complicated to understand by biological experiments alone. Analytical solutions can be derived only for the simplest models and numerical simulations are necessary in most cases to evaluate the models and their properties and to compare them with measured data.This thesis focuses on the mesoscopic simulation level, which captures both, space dependent behavior by diffusion and the inherent stochasticity of cellular systems. Space is partitioned into compartments by a mesh and the number of molecules of each species in each compartment gives the state of the system. We first examine how to compute the jump coefficients for a discrete stochastic jump process on unstructured meshes from a first exit time approach guaranteeing the correct speed of diffusion. Furthermore, we analyze different methods leading to non-negative coefficients by backward analysis and derive a new method, minimizing both the error in the diffusion coefficient and in the particle distribution.The second part of this thesis investigates macromolecular crowding effects. A high percentage of the cytosol and membranes of cells are occupied by molecules. This impedes the diffusive motion and also affects the reaction rates. Most algorithms for cell simulations are either derived for a dilute medium or become computationally very expensive when applied to a crowded environment. Therefore, we develop a multiscale approach, which takes the microscopic positions of the molecules into account, while still allowing for efficient stochastic simulations on the mesoscopic level. Finally, we compare on- and off-lattice models on the microscopic level when applied to a crowded environment.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Lötstedt, Per,ProfessorUppsala universitet,Avdelningen för beräkningsvetenskap(Swepub:uu)plo24874 (thesis advisor)
  • Engblom, Stefan,DocentUppsala universitet,Avdelningen för beräkningsvetenskap(Swepub:uu)steng957 (thesis advisor)
  • Grima, Ramon,ReaderUniversity of Edinburgh (opponent)
  • Uppsala universitetAvdelningen för beräkningsvetenskap (creator_code:org_t)

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view