SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Strømme Maria)
 

Sökning: WFRF:(Strømme Maria) > Development of Nano...

Development of Nanoporous Inorganic Carbonates for Pharmaceutical and Environmental Applications

Vall, Maria (författare)
Uppsala universitet,Nanoteknologi och funktionella material
Cheung, Ocean (preses)
Uppsala universitet,Nanoteknologi och funktionella material
Strømme, Maria (preses)
Uppsala universitet,Nanoteknologi och funktionella material
visa fler...
Rosenholm, Jessica, Professor (opponent)
Åbo Akademi
visa färre...
 (creator_code:org_t)
ISBN 9789151306384
Uppsala : Acta Universitatis Upsaliensis, 2019
Engelska 65 s.
Serie: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 1801
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Mesoporous magnesium carbonate (MMC) is a highly porous, anhydrous material which can be synthesized without the use of templates. This thesis shows how post- and in synthesis modification of MMC can create porous inorganic carbonates suitable for different pharmaceutical and environmental applications. Controlled release of IBU was achieved by loading IBU onto amine modified MMC (aMMC). The amine coverage was varied and there was a clear correlation between the release rate of IBU and the amine coverage, the higher the amine coverage the slower the release rate. aMMC was also used to load salicylic acid (SA). SA was then released within 15 minutes in a phosphate buffer (pH 6.8). The cytotoxicity of aMMC was evaluated and it was found non-toxic for human dermal fibroblast cells with particle concentration up to 1000 µg/mL for 48 h of exposure.  aMMC also showed a high adsorption capacity for three different types of anionic azo dyes;  acid red 183, amaranth and reactive black 5. The addition of amine groups to the surface of MMC significantly increased the uptake of the three dyes tested. Composite materials were synthesized by combining the synthesis of MMC and the synthesis of highly porous amorphous calcium carbonate. The calcium magnesium carbonate composite materials were evaluated for their CO2 sorption capacity (at 650 °C) and their CO2 cyclic stability. Addition of Al(NO3)3 to the best performing composite further improved its cyclic stability and the composite maintained a high CO2 uptake over 23 sorption/desorption cycles. Composite materials were also made by adding Al2O3 and SiO2 nanoparticles to the synthesis liquid of MMC.  This resulted in materials with Al2O3 and SiO2 incorporated into the porous MMC structure. The MMC materials with Al2O3 and SiO2 nanoparticles was then impregnated with Ni(NO3)2, calcined and used for catalytic conversion of syngas to natural gas. The material containing Al2O3 nanoparticles performed the best and had a CO conversion of close to 100% at 350°C as well as a high CH4 yield and selectivity.In this thesis porous inorganic carbonates have been developed and evaluated for their performance in different pharmaceutical and environmental applications.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Nanoteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Nano-technology (hsv//eng)

Nyckelord

Mesoporous magnesium carbonate
drug delivery
water purification
CO2 capture
catalysis
Engineering Science with specialization in Nanotechnology and Functional Materials
Teknisk fysik med inriktning mot nanoteknologi och funktionella material

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Vall, Maria
Cheung, Ocean
Strømme, Maria
Rosenholm, Jessi ...
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Nanoteknik
Delar i serien
Digital Comprehe ...
Av lärosätet
Uppsala universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy