SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Vallieres X.)
 

Search: WFRF:(Vallieres X.) > Cold electrons at c...

Cold electrons at comet 67P/Churyumov-Gerasimenko

Engelhardt, Ilka. A. D. (author)
Uppsala universitet,Rymd- och plasmafysik,Institutet för rymdfysik, Uppsalaavdelningen,RPF
Eriksson, Anders I. (author)
Uppsala universitet,Institutet för rymdfysik, Uppsalaavdelningen
Vigren, Erik (author)
Uppsala universitet,Institutet för rymdfysik, Uppsalaavdelningen
show more...
Valliéres, X. (author)
Rubin, M. (author)
Gilet, N. (author)
Henri, P. (author)
show less...
 (creator_code:org_t)
2018-08-14
2018
English.
In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Context. The electron temperature of the plasma is one important aspect of the environment. Electrons created by photoionization or impact ionization of atmospheric gas have energies ∼10 eV. In an active comet coma the gas density is high enough for rapid cooling of the electron gas to the neutral gas temperature (few hundred kelvin). How cooling evolves in less active comets has not been studied before.Aims. To investigate how electron cooling varied as comet 67P/Churyumov-Gerasimenko changed its activity by three orders of magnitude during the Rosetta mission.Methods. We use in-situ data from Rosetta plasma and neutral gas sensors. By combining Langmuir probe bias voltage sweeps and Mutual Impedance Probe measurements we determine when cold electrons form at least 25% of the total electron density. We compare the results to what is expected from simple models of electron cooling, using the observed neutral gas density as input.Results. We demonstrate that the slope of the Langmuir probe sweep can be used as a proxy for cold electron presence. We show statistics of cold electron observations over the 2 year mission period. We find cold electrons at lower activity than expected by a simple model based on free radial expansion and continuous loss of electron energy. Cold electrons are seen mainly when the gas density indicates an exobase may have formed.Conclusions. Collisional cooling of electrons following a radial outward path is not sufficient for explaining the observations. We suggest the ambipolar electric field is important for the observed cooling. This field keeps electrons in the inner coma for much longer time, giving them time to dissipate energy by collisions with the neutrals. We conclude there is need of better models to describe the plasma environment of comets, including at least two populations of electrons and the ambipolar field.

Subject headings

NATURVETENSKAP  -- Fysik -- Fusion, plasma och rymdfysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Fusion, Plasma and Space Physics (hsv//eng)

Keyword

Fysik med inriktning mot rymd- och plasmafysik
Physics with specialization in Space and Plasma Physics

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view