SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Kullberg Kerstin)
 

Sökning: WFRF:(Kullberg Kerstin) > Water–fat separatio...

Water–fat separation in magnetic resonance imaging and its application in studies of brown adipose tissue

Andersson, Jonathan (författare)
Uppsala universitet,Radiologi
Kullberg, Joel, 1979- (preses)
Ahlström, Håkan (preses)
visa fler...
Lubberink, Mark (preses)
Lagerstrand, Kerstin, Docent (opponent)
Department of Medical Physics and Biomedicine, Sahlgrenska University Hospital, Gothenburg, Sweden and Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
visa färre...
 (creator_code:org_t)
ISBN 9789151307183
Uppsala : Acta Universitatis Upsaliensis, 2019
Engelska 65 s.
Serie: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 1589
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Virtually all the magnetic resonance imaging (MRI) signal of a human originates from water and fat molecules. By utilizing the property chemical shift the signal can be separated, creating water- and fat-only images. From these images it is possible to calculate quantitative fat fraction (FF) images, where the value of each voxel is equal to the percentage of its signal originating from fat. In papers I and II methods for water–fat signal separation are presented and evaluated.The method in paper I utilizes a graph-cut to separate the signal and was designed to perform well even for a low signal-to-noise ratio (SNR). The method was shown to perform as well as previous methods at high SNRs, and better at low SNRs.The method presented in paper II uses convolutional neural networks to perform the signal separation. The method was shown to perform similarly to a previous method using a graph-cut when provided non-undersampled input data. Furthermore, the method was shown to be able to separate the signal using undersampled data. This may allow for accelerated MRI scans in the future.Brown adipose tissue (BAT) is a thermogenic organ with the main purpose of expending chemical energy to prevent the body temperature from falling too low. Its energy expending capability makes it a potential target for treating overweight/obesity and metabolic dysfunctions, such as type 2 diabetes. The most well-established way of estimating the metabolic potential of BAT is through measuring glucose uptake using 18F-fludeoxyglucose (18F-FDG) positron emission tomography (PET) during cooling. This technique exposes subjects to potentially harmful ionizing radiation, and alternative methods are desired. One alternative method is measuring the BAT FF using MRI.In paper III the BAT FF in 7-year olds was shown to be negatively associated with blood serum levels of the bone-specific protein osteocalcin and, after correction for adiposity, thigh muscle volume. This may have implications for how BAT interacts with both bone and muscle tissue.In paper IV the glucose uptake of BAT during cooling of adult humans was measured using 18F-FDG PET. Additionally, their BAT FF was measured using MRI, and their skin temperature during cooling near a major BAT depot was measured using infrared thermography (IRT). It was found that both the BAT FF and the temperature measured using IRT correlated with the BAT glucose uptake, meaning these measurements could be potential alternatives to 18F-FDG PET in future studies of BAT.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Radiologi och bildbehandling (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Radiology, Nuclear Medicine and Medical Imaging (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Medicinsk bildbehandling (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Medical Image Processing (hsv//eng)

Nyckelord

brown adipose tissue
magnetic resonance imaging
water–fat signal separation
graph-cut
positron emission tomography
18F-fludeoxyglucose
infrared thermography
machine learning
artificial neural networks
deep learning
convolutional neural networks
Radiology
Radiologi

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy