SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Nguyen Hugo)
 

Sökning: WFRF:(Nguyen Hugo) > Medical grade titan...

Medical grade titanium on-chip : assessing the biological properties of biomaterials for bone regeneration

Carter, Sarah-Sophia, 1994- (författare)
Uppsala universitet,Mikrosystemteknik,Science for Life Laboratory, SciLifeLab,EMBLA
Nguyen, Hugo, 1955- (författare)
Uppsala universitet,Mikrosystemteknik
Moreira, Milena, 1977- (författare)
Uppsala universitet,Science for Life Laboratory, SciLifeLab,Mikrosystemteknik,EMBLA
visa fler...
Tenje, Maria (författare)
Uppsala universitet,Mikrosystemteknik,Science for Life Laboratory, SciLifeLab,EMBLA
Mestres, Gemma, 1984- (författare)
Uppsala universitet,Mikrosystemteknik,Science for Life Laboratory, SciLifeLab,EMBLA
visa färre...
 (creator_code:org_t)
2019
2019
Engelska.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Medical grade titanium on-chip: assessing the biological properties of biomaterials for bone regeneration Sarah-Sophia D. Carter1, Hugo Nguyen2, Milena Moreira1, Maria Tenje1, and Gemma Mestres11Department of Engineering Sciences, Science for Life Laboratory, Uppsala University, Sweden2Department of Engineering Sciences, Uppsala University, Sweden IntroductionBefore entering the clinic, biomaterials need to be thoroughly evaluated, which requires accurate in vitro models. In this work, we have developed a microfluidic device that could be used to assess the biological properties of biomaterials, in a more in vivo-like environment than what is currently possible. MethodsOur device consists of a polydimethylsiloxane (PDMS, Sylgard 184) microfluidic channel (l= 6 mm, w= 2 mm, h= 200 µm) and a titanium disc (Ti6Al4V, at bottom), held together by an additively manufactured fixture (Fig. 1A). PDMS was cured overnight at 65°C on a silicon wafer master. Once the microchannel and titanium disc were positioned, MC3T3-E1 pre-osteoblast-like cells were seeded (50,000 cells/cm2). After 5 hours incubation under standard culture conditions, flow was started (2 μl/min). As a control, MC3T3-E1 cells were seeded onto plain titanium discs off-chip. Cell viability and morphology were assessed after 20 hours by calcein-AM/propidium iodide (PI), staining live and dead cells respectively. Results and discussionFigure 1B and 1C show calcein-AM/PI stained MC3T3-E1 cells cultured on-chip and figure 1D shows the control, MC3T3-E1 cells cultured off-chip. The potential to culture cells in our chip was confirmed by the presence of a majority of viable cells (green) with a similar morphology as the control sample. The reason for the increased amount of dead cells (red) on-chip compared to the control needs to be further examined, which requires longer-term experiments.ConclusionWe have set the first steps towards a microfluidic tool for the assessment of biological properties of biomaterials.

Nyckelord

Organ-on-chip
biomaterials
microfluidics
Teknisk fysik med inriktning mot mikrosystemteknik
Engineering Science with specialization in Microsystems Technology

Publikations- och innehållstyp

vet (ämneskategori)
kon (ämneskategori)

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy