SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Björefors Fredrik 1971 )
 

Sökning: WFRF:(Björefors Fredrik 1971 ) > Capacity Limiting E...

Capacity Limiting Effects for Freestanding, Monolithic TiO2 Nanotube Electrodes with High Mass Loadings

Wei, Wei (författare)
Uppsala universitet,Oorganisk kemi
Ihrfors, Charlotte (författare)
Uppsala universitet,Oorganisk kemi
Björefors, Fredrik, 1971- (författare)
Uppsala universitet,Strukturkemi
visa fler...
Nyholm, Leif, 1961- (författare)
Uppsala universitet,Oorganisk kemi
visa färre...
 (creator_code:org_t)
2020-04-13
2020
Engelska.
Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 3:5, s. 4638-4649
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Galvanostatic and cyclic voltammetric experiments have been used to identify the main capacity limiting phenomenon for TiO2 nanotube electrodes with nanotube lengths between 4.5 and 40.5 mu m and mass loadings up to 10.5 mg cm(-2). The results for the nanotube electrodes, which were synthesized by using a two-step anodization and evaluated in pouch cell batteries containing lithium metal counter electrodes, show that higher capacities could be obtained by using voltammetric rather than galvanostatic cycling and that the capacity is limited by the TiO2 lithiation step. The maximum average TiO2 lithiation degree (which correspond to an average composition of about Li0.55TiO2) is a result of a decrease in the lithium ion diffusion rate with an increasing concentration of LixTiO2 in the nanotubes. This saturation effect is also responsible for the diffusion-controlled decrease in the capacity seen when increasing the constant current cycling rate. The different electrochemical lithiation and delithiation behaviors are explained based on the differences between the LixTiO2 and TiO2 concentration profiles obtained in the nanotubes. During the lithiation, the increasing LixTiO2 concentration in the nanotubes gives rise to a decreasing lithiation voltage when the LixTiO2 concentration becomes sufficiently high. The areal capacity of the nanotube electrodes can be increased from 0.18 to 1 mAh cm(-2) (at a rate of C/5) by increasing the length of the nanotubes from 4.5 to 40.5 mu m. Although the cell resistance is shown to be practically independent of the nanotube length, the increasing mass loading and hence current required at a given cycling rate result in larger iR drops for the longer nanotubes. The data also indicate the presence of a lithium-ion trapping effect due to two-way diffusion of lithium ions in the lithiated nanotubes in analogy with the behavior previously found for lithium-alloy-forming electrode materials.

Ämnesord

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)

Nyckelord

TiO2 nanotubes
lithium-ion batteries
monolithic electrodes
rate performance
diffusion control
lithium-ion trapping

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Wei, Wei
Ihrfors, Charlot ...
Björefors, Fredr ...
Nyholm, Leif, 19 ...
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Kemi
och Materialkemi
Artiklar i publikationen
ACS Applied Ener ...
Av lärosätet
Uppsala universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy