SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:uu-423917"
 

Search: id:"swepub:oai:DiVA.org:uu-423917" > Modeling the Role o...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Mhasal, Anil RhanuUppsala universitet,Biokemi (author)

Modeling the Role of a Flexible Loop and Active Site Side Chains in Hydride Transfer Catalyzed by Glycerol-3-phosphate Dehydrogenase

  • Article/chapterEnglish2020

Publisher, publication year, extent ...

  • 2020-09-03
  • AMER CHEMICAL SOC,2020
  • electronicrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:uu-423917
  • https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423917URI
  • https://doi.org/10.1021/acscatal.0c02757DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Glycerol-3-phosphate dehydrogenase is a biomedically important enzyme that plays a crucial role in lipid biosynthesis. It is activated by a ligand-gated conformational change that is necessary for the enzyme to reach a catalytically competent conformation capable of efficient transition-state stabilization. While the human form (hlGPDH) has been the subject of extensive structural and biochemical studies, corresponding computational studies to support and extend experimental observations have been lacking. We perform here detailed empirical valence bond and Hamiltonian replica exchange molecular dynamics simulations of wild-type hlGPDH and its variants, as well as providing a crystal structure of the binary hlGPDH center dot NAD R269A variant where the enzyme is present in the open conformation. We estimated the activation free energies for the hydride transfer reaction in wild-type and substituted hlGPDH and investigated the effect of mutations on catalysis from a detailed structural study. In particular, the K120A and R269A variants increase both the volume and solvent exposure of the active site, with concomitant loss of catalytic activity. In addition, the R269 side chain interacts with both the Q295 side chain on the catalytic loop, and the substrate phosphodianion. Our structural data and simulations illustrate the critical role of this side chain in facilitating the closure of hlGPDH into a catalytically competent conformation, through modulating the flexibility of a key catalytic loop (292-LNGQKL-297). This, in turn, rationalizes a tremendous 41,000 fold decrease experimentally in the turnover number, k(cat), upon truncating this residue, as loop closure is essential for both correct positioning of key catalytic residues in the active site, as well as sequestering the active site from the solvent. Taken together, our data highlight the importance of this ligand-gated conformational change in catalysis, a feature that can be exploited both for protein engineering and for the design of allosteric inhibitors targeting this biomedically important enzyme.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Romero-Rivera, AdrianUppsala universitet,Biokemi(Swepub:uu)adrro578 (author)
  • Mydy, Lisa S.SUNY Buffalo, Jacobs Sch Med & Biomed Sci, Dept Biol Struct, Buffalo, NY 14203 USA. (author)
  • Cristobal, Judith R.SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. (author)
  • Gulick, Andrew M.SUNY Buffalo, Jacobs Sch Med & Biomed Sci, Dept Biol Struct, Buffalo, NY 14203 USA. (author)
  • Richard, John P.SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. (author)
  • Kamerlin, Shina C. Lynn,1981-Uppsala universitet,Institutionen för kemi - BMC(Swepub:uu)lynka392 (author)
  • Uppsala universitetBiokemi (creator_code:org_t)

Related titles

  • In:ACS Catalysis: AMER CHEMICAL SOC10:19, s. 11253-112672155-5435

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view