SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Sá Jacinto)
 

Search: WFRF:(Sá Jacinto) > Nanotechnology for ...

Nanotechnology for catalysis and solar energy conversion

Banin, U. (author)
Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel; Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-91904 Jerusalem, Israel
Waiskopf, N. (author)
Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel; Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-91904 Jerusalem, Israel
Hammarström, Leif, 1964- (author)
Uppsala universitet,Fysikalisk kemi
show more...
Boschloo, Gerrit (author)
Uppsala universitet,Fysikalisk kemi
Freitag, Marina (author)
Uppsala universitet,Fysikalisk kemi
Johansson, Erik M. J. (author)
Uppsala universitet,Fysikalisk kemi
Sá, Jacinto (author)
Uppsala universitet,Fysikalisk kemi
Tian, Haining, 1983- (author)
Uppsala universitet,Fysikalisk kemi
Johnston, M. B. (author)
Univ Oxford, Dept Phys, Clarendon Lab, Pk Rd, Oxford OX1 3PU, England
Herz, L. M. (author)
Univ Oxford, Dept Phys, Clarendon Lab, Pk Rd, Oxford OX1 3PU, England
Milot, R. L. (author)
Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
Kanatzidis, M. G. (author)
Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
Ke, W. (author)
Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
Spanopoulos, I. (author)
Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
Kohlstedt, K. L. (author)
Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
Schatz, G. C. (author)
Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
Lewis, N. (author)
CALTECH, Div Chem & Chem Engn, 210 Noyes Lab 127-72, Pasadena, CA 91125 USA; CALTECH, Beckman Inst, 210 Noyes Lab 127-72, Pasadena, CA 91125 USA
Meyer, T. (author)
Univ N Carolina, Dept Chem, Chapel Hill, NC USA
Nozik, A. J. (author)
Natl Renewable Energy Lab, Golden, CO USA; Univ Colorado, Dept Chem, Boulder, CO 80309 US
Beard, M. C. (author)
Natl Renewable Energy Lab, Golden, CO USA
Armstrong, F. (author)
Univ Oxford, Dept Chem, Oxford, England
Megarity, C. F. (author)
Univ Oxford, Dept Chem, Oxford, England
Schmuttenmaer, C. A. (author)
Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA
Batista, V. S. (author)
Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA
Brudvig, G. W. (author)
Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA
show less...
 (creator_code:org_t)
2020-11-05
2021
English.
In: Nanotechnology. - : Institute of Physics Publishing (IOPP). - 0957-4484 .- 1361-6528. ; 32:4
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • This roadmap on Nanotechnology for Catalysis and Solar Energy Conversion focuses on the application of nanotechnology in addressing the current challenges of energy conversion: 'high efficiency, stability, safety, and the potential for low-cost/scalable manufacturing' to quote from the contributed article by Nathan Lewis. This roadmap focuses on solar-to-fuel conversion, solar water splitting, solar photovoltaics and bio-catalysis. It includes dye-sensitized solar cells (DSSCs), perovskite solar cells, and organic photovoltaics. Smart engineering of colloidal quantum materials and nanostructured electrodes will improve solar-to-fuel conversion efficiency, as described in the articles by Waiskopf and Banin and Meyer. Semiconductor nanoparticles will also improve solar energy conversion efficiency, as discussed by Boschloo et al in their article on DSSCs. Perovskite solar cells have advanced rapidly in recent years, including new ideas on 2D and 3D hybrid halide perovskites, as described by Spanopoulos et al 'Next generation' solar cells using multiple exciton generation (MEG) from hot carriers, described in the article by Nozik and Beard, could lead to remarkable improvement in photovoltaic efficiency by using quantization effects in semiconductor nanostructures (quantum dots, wires or wells). These challenges will not be met without simultaneous improvement in nanoscale characterization methods. Terahertz spectroscopy, discussed in the article by Milot et al is one example of a method that is overcoming the difficulties associated with nanoscale materials characterization by avoiding electrical contacts to nanoparticles, allowing characterization during device operation, and enabling characterization of a single nanoparticle. Besides experimental advances, computational science is also meeting the challenges of nanomaterials synthesis. The article by Kohlstedt and Schatz discusses the computational frameworks being used to predict structure-property relationships in materials and devices, including machine learning methods, with an emphasis on organic photovoltaics. The contribution by Megarity and Armstrong presents the 'electrochemical leaf' for improvements in electrochemistry and beyond. In addition, biohybrid approaches can take advantage of efficient and specific enzyme catalysts. These articles present the nanoscience and technology at the forefront of renewable energy development that will have significant benefits to society.

Subject headings

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)
NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)

Keyword

renewables
biocatalysis
solar cells
solar energy conversion
water splitting
multiple exciton generation
photocatalysis

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view