SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Tan Zeli)
 

Sökning: WFRF:(Tan Zeli) > Validation and Sens...

Validation and Sensitivity Analysis of a 1-D Lake Model Across Global Lakes

Guo, Mingyang (författare)
Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
Zhuang, Qianlai (författare)
Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA; Purdue Climate Change Res Ctr, W Lafayette, IN 47907 USA
Yao, Huaxia (författare)
Ontario Minist Environm Conservat & Pk, Dorset Environm Sci Ctr, Dorset, ON, Canada
visa fler...
Golub, Malgorzata (författare)
Uppsala universitet,Limnologi
Leung, L. Ruby (författare)
Pacific Northwest Natl Lab, Richland, WA 99352 USA
Pierson, Don (författare)
Uppsala universitet,Limnologi
Tan, Zeli (författare)
Pacific Northwest Natl Lab, Richland, WA 99352 USA
visa färre...
 (creator_code:org_t)
American Geophysical Union (AGU), 2021
2021
Engelska.
Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 126:4
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Lakes have important influence on weather and climate from local to global scales. However, their prediction using numerical models is notoriously difficult because lakes are highly heterogeneous across the globe, but observations are sparse. Here, we assessed the performance of a 1‐D lake model in simulating the thermal structures of 58 lakes with diverse morphometric and geographic characteristics by following the phase 2a local lake protocol of the Intersectoral Impact Model Intercomparison Project (ISIMIP2a). After calibration, the root‐mean‐square errors (RMSE) were below 2°C for 70% and 75% of the lakes for epilimnion and full‐profile temperature simulations, with an average of 1.71°C and 1.43°C, respectively. The model performance mainly depended on lake shape rather than location, supporting the possibility of grouping model parameters by lake shape for global applications. Furthermore, through machine‐learning based parameter sensitivity tests, we identified turbulent heat fluxes, wind‐driven mixing, and water transparency as the major processes controlling lake thermal and mixing regimes. Snow density was also important for modeling the ice phenology of high‐latitude lakes. The relative influence of the key processes and the corresponding parameters mainly depended on lake latitude and depth. Turbulent heat fluxes showed a decreasing importance in affecting epilimnion temperature with increasing latitude. Wind‐driven mixing was less influential to lake stratification for deeper lakes while the impact of light extinction, on the contrary, showed a positive correlation with lake depth. Our findings may guide improvements in 1‐D lake model parameterizations to achieve higher fidelity in simulating global lake thermal dynamics.

Ämnesord

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Oceanografi, hydrologi och vattenresurser (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Oceanography, Hydrology and Water Resources (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Naturgeografi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Physical Geography (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy