SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Göksel Orcun)
 

Sökning: WFRF:(Göksel Orcun) > (2021) > Modality attention ...

Modality attention and sampling enables deep learning with heterogeneous marker combinations in fluorescence microscopy

Gomariz, Alvaro (författare)
ETH Zurich,Computer-assisted Applications in Medicine
Portenier, Tiziano (författare)
ETH Zurich,Computer-assisted Applications in Medicine
Helbling, Patrick M. (författare)
visa fler...
Isringhausen, Stephan (författare)
Suessbier, Ute (författare)
Nombela-Arrieta, César (författare)
Göksel, Orcun (författare)
Uppsala universitet,Avdelningen för visuell information och interaktion,Bildanalys och människa-datorinteraktion,ETH Zurich,Computer-assisted Applications in Medicine
visa färre...
 (creator_code:org_t)
2021-08-09
2021
Engelska.
Ingår i: Nature Machine Intelligence. - : Springer Nature. - 2522-5839. ; 3:9, s. 799-811
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Fluorescence microscopy allows for a detailed inspection of cells, cellular networks and anatomical landmarks by staining with a variety of carefully selected markers visualized as colour channels. Quantitative characterization of structures in acquired images often relies on automatic image analysis methods. Despite the success of deep learning methods in other vision applications, their potential for fluorescence image analysis remains underexploited. One reason lies in the considerable workload required to train accurate models, which are normally specific for a given combination of markers and therefore applicable to a very restricted number of experimental settings. We herein propose ‘marker sampling and excite’—a neural network approach with a modality sampling strategy and a novel attention module that together enable (1) flexible training with heterogeneous datasets with combinations of markers and (2) successful utility of learned models on arbitrary subsets of markers prospectively. We show that our single neural network solution performs comparably to an upper bound scenario in which an ensemble of many networks is naively trained for each possible marker combination separately. We also demonstrate the feasibility of this framework in high-throughput biological analysis by revising a recent quantitative characterization of bone-marrow vasculature in three-dimensional confocal microscopy datasets and further confirm the validity of our approach on another substantially different dataset of microvessels in foetal liver tissues. Not only can our work substantially ameliorate the use of deep learning in fluorescence microscopy analysis, but it can also be utilized in other fields with incomplete data acquisitions and missing modalities.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datorseende och robotik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Vision and Robotics (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Medicinsk bioteknologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Medical Biotechnology (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Medicinsk bildbehandling (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Medical Image Processing (hsv//eng)
NATURVETENSKAP  -- Biologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences (hsv//eng)

Nyckelord

Artificial Intelligence
Computer Networks and Communications
Computer Vision and Pattern Recognition
Human-Computer Interaction
Software

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy