SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Atif Abdul Raouf 1996 )
 

Search: WFRF:(Atif Abdul Raouf 1996 ) > Influence of flow i...

Influence of flow in the adhesion and proliferation of cells on hydroxyapatite integrated in a microscale culture

Atif, Abdul Raouf, 1996- (author)
Uppsala universitet,Mikrosystemteknik,EMBLA
Pujari-Palmer, Michael, Dr. 1978- (author)
Uppsala universitet,Tillämpad materialvetenskap,MiM
Tenje, Maria (author)
Uppsala universitet,Mikrosystemteknik,EMBLA
show more...
Mestres, Gemma, 1984- (author)
Uppsala universitet,Mikrosystemteknik,EMBLA
show less...
 (creator_code:org_t)
2021
2021
English.
  • Conference paper (other academic/artistic)
Abstract Subject headings
Close  
  • INTRODUCTION: Synthetic biomaterials, such as calcium phosphate cements (CPCs), are a promising alternative to autologous bone to enhance bone regeneration. Calcium-deficient hydroxyapatite (CDHA), the end-product of apatite cements, matches the inorganic phase of the bone and exhibits excellent biocompatibility in vivo [1]. However,  in vitro, CDHA uptakes calcium ions (Ca2+) from cell culture medium [2], causing detrimental effects on cell activity and function [3]. The aim of this work was to integrate CDHA into a microfluidic chip that provides continued culture medium supply, and to evaluate cell adhesion and proliferation as compared to standard well plates.METHODS:CDHA was integrated in a polydimethylsiloxane (PDMS)-glass microfluidic chip (CDHA-on-chip). PDMS was cured in a 3D-printed mould at 60°C for 2h. α-tricalcium phosphate was mixed with 2.5% w/v Na2HPO4(aq) (liquid-to-powder of 0.65 ml/g) and the CPC was cast within a PDMS pocket. The CPC was immersed in an aqueous solution at 37°C for 10 days to ensure full transformation to CDHA. Through plasma treatment, a glass slide was bonded to the PDMS holding the CDHA, thus forming a 0.5mm channel above the CDHA. CDHA samples were pre-incubated for 24h in minimum essential media (MEM) supplemented with 10% FBS and 1% penicillin-streptomycin (sMEM). Pre-osteoblasts (MC3T3-E1) were seeded at 50,000 cells/cm2 and after a cell adhesion period of 2h, flow was applied for 72h through the chip at different rates: 2, 8 and 14 μl/min. A static (0 μl/min) chip condition was included, where sMEM was manually replaced every 24h. CDHA discs (⌀=6mm, h=2mm) placed in a 96-well plate were used as a standard static control (200 μl sMEM replaced every 24h). At 6h and 72h, the cells were stained with a calcein, propidium iodide and Hoechst triple-stain to assess their adhesion and proliferation, respectively. In a separate experiment, sMEM was flown through the chips for 24h at the aforementioned flow rates, and Ca2+ concentration was quantified via inductively coupled plasma-optical emission spectroscopy (ICP-OES). As control, sMEM in contact with CDHA discs for 24h was evaluated.RESULTS:A larger number of cells adhered on the CDHA-on-chip under flow as opposed to both static CDHA-on-chip and CDHA disc in a well plate. Differences in cell adhesion between the flow conditions were negligible. Cell proliferation at 72h was significantly increased under flow compared to CDHA disc samples (Fig.1A). Static CDHA-on-chip showed almost no viable cells. 2 and 8 μl/min flow conditions showed the greatest cell counts, followed by the 14 μl/min flow condition. At higher flow rates, Ca2+ concentrations were closer to in fresh medium (Fig.1B)DISCUSSION & CONCLUSIONS:The static CDHA-on-chip and disc samples displayed a low degree of cell adhesion and proliferation, which seemed to indicate that ionic exchange led to detrimental cell behaviour. Cells displayed the greatest degree of adhesion and proliferation at a flow rate of 2 and 8 μl/min, probably due to more optimal Ca2+ concentrations. At 14 μl/min, the degree of cell adhesion and proliferation decreased, which could be ascribed to adverse effects of shear stress.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)

Keyword

Teknisk fysik med inriktning mot mikrosystemteknik
Engineering Science with specialization in Microsystems Technology

Publication and Content Type

vet (subject category)
kon (subject category)

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view