SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Witcher Taylor)
 

Search: WFRF:(Witcher Taylor) > Development of perm...

Development of permeable networks by viscous-brittle deformation in a shallow rhyolite intrusion. Part 2: Microstructural analysis

Witcher, Taylor (author)
Uppsala universitet,Mineralogi, petrologi och tektonik
Burchardt, Steffi (author)
Mattsson, Tobias (author)
show more...
Heap, Michael J. (author)
Pluymakers, Anne (author)
Li, Kai (author)
Lazor, Peter (author)
show less...
 (creator_code:org_t)
English.
  • Other publication (other academic/artistic)
Abstract Subject headings
Close  
  • Volcanic and magmatic outgassing mechanisms can determine eruptive behavior of shallow silicic magma bodies. Most outgassing mechanisms proposed take place along conduit margins, where highest strain rates drive ascending magma to brittle failure. However, these mechanisms do not account for outgassing large volumes of magma away from the conduit walls. Here, we present a continuum of porosity preserved in the microcrystalline rhyolitic Sandfell laccolith, Eastern Iceland. Three stages in the continuum are described: porous flow bands, pore channels, and fracture bands. These deformation features are present throughout the entire exposed volume of the Sandfell laccolith in meter-long band geometries, ranging from mm- to dm-scale thickness, and interlayered with coherent, undeformed rhyolite. Using microstructural analytical methods, we show that emplacement-related deformation induced strain partitioning around a crystal content of 45% that resulted in the segregation of melt-rich and melt-poorer flow bands. Subsequent deformation induced by continued magma emplacement caused strain partitioning in the melt-rich flow bands. Depending on strain rate, different types of deformation features developed, through dilation or porosity redistribution (porous flow bands), cavitation (pore channels), or tensile fracture (fracture bands). Porous flow bands have permeability values ~4 orders of magnitude higher than undeformed rhyolite. Pore channels and fracture bands have much larger length scales, and so permeability increase dramatically in those systems. Hence, the abundance and interconnectivity of deformation features preserved in the Sandfell laccolith provided an efficient outgassing mechanism for the bulk of the intrusion. Outgassing due to viscous-brittle magma deformation during magma emplacement should therefore be considered for crystal-rich magmas, e.g., during effusive lava dome extrusion.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Geologi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geology (hsv//eng)

Publication and Content Type

vet (subject category)
ovr (subject category)

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view