SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Rusz Ján)
 

Sökning: WFRF:(Rusz Ján) > Unveiling the impac...

Unveiling the impact of temperature on magnon diffuse scattering detection in the transmission electron microscope

Castellanos-Reyes, José Ángel (författare)
Uppsala universitet,Materialteori
Zeiger, Paul, 1994- (författare)
Uppsala universitet,Materialteori
Bergman, Anders, 1978- (författare)
Uppsala universitet,Materialteori
visa fler...
Kepaptsoglou, Demie (författare)
SuperSTEM Lab, SciTech Daresbury Campus, Daresbury WA4 4AD, England.;Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
Ramasse, Quentin M. (författare)
SuperSTEM Lab, SciTech Daresbury Campus, Daresbury WA4 4AD, England.;Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England.;Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England.
Idrobo, Juan Carlos (författare)
Univ Washington, Mat Sci & Engn Dept, Seattle, WA 98195 USA.
Rusz, Jan, 1979- (författare)
Uppsala universitet,Materialteori
visa färre...
 (creator_code:org_t)
American Physical Society, 2023
2023
Engelska.
Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 108:13
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Magnon diffuse scattering (MDS) signals could, in principle, be studied with high spatial resolution in scanning transmission electron microscopy (STEM), thanks to recent technological progress in electron energy-loss spectroscopy. However, detecting MDS signals in STEM is technically challenging due to their overlap with the much stronger thermal diffuse scattering (TDS) signals. In bcc Fe at 300 K, MDS signals greater than or comparable to TDS signals have been predicted to occur under the central Bragg disk, well into a currently inaccessible energy-loss region. Therefore, to successfully detect MDS in STEM, it is necessary to identify conditions in which TDS and MDS signals can be distinguished from one another in regions outside the central Bragg disk. Temperature may be a key factor due to the distinct thermal signatures of magnon and phonon signals. In this work, we present a study on the effects of temperature on MDS and TDS in bcc Fe-considering a detector outside the central Bragg disk and a fixed convergent electron probe-using the frozen phonon and frozen magnon multislice methods. Our study reveals that neglecting the effects of atomic vibrations causes the MDS signal to grow approximately linearly up to the Curie temperature of Fe, after which it exhibits less variation. The MDS signal displays an alternating behavior due to dynamical diffraction, instead of increasing monotonically as a function of thickness. The inclusion of the effects of atomic vibrations through a complex atomic electrostatic potential causes the linear growth of the MDS signal to change to a nonlinear behavior that exhibits a predominant peak for a sample of thickness 16.072 nm at 1100 K. In contrast, the TDS signal grows more linearly than the MDS signal through the studied temperature range but still exhibits appreciable dynamical diffraction effects. An analysis of the signal-to-noise ratio (SNR) shows that the MDS signal can be a statistically significant contribution to the total scattering intensity under realizable measurement conditions and feasible acquisition times. For example, our study found that a SNR of 3 can be achieved with a beam current of 1 nA in less than 30 min for the 16.072-nm-thick bcc Fe sample at 1100 K.

Ämnesord

NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy