SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:uu-8443"
 

Search: id:"swepub:oai:DiVA.org:uu-8443" > Self Lubrication on...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Self Lubrication on the Atomic Scale : Design, Synthesis and Evaluation of Coatings

Lindquist, Mattias, 1979- (author)
Uppsala universitet,Institutionen för teknikvetenskaper
Hogmark, Sture (thesis advisor)
Wiklund, Urban (thesis advisor)
show more...
Hutchings, Ian, Professor (opponent)
Institute for Manufacturing, Department of Engineering, Cambridge
show less...
 (creator_code:org_t)
ISBN 9789155470883
Uppsala : Acta Universitatis Upsaliensis, 2008
English 59 s.
Series: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 391
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • In this thesis a new design concept of tribologically active coatings aimed for low friction applications, have been explored. Materials modeled by ab initio DFT calculations were realized through deposition of carbide and nanocomposite coatings by DC-magnetron sputtering. The design concept employs destabilization of a carbide material by alloying with a weak carbide-forming element, which refines the structure into a nanocomposite. The destabilization creates a driving force for superficial ejection of carbon in a tribological contact, forming a lubricious graphitic carbon layer. The otherwise hard material limits the real contact area and the transformed layer accounts for low shear resistance. Hence, the ideal situation for low friction is provided by formation of an easily sheared thin surface layer on a hard material. TiAlC was chosen as a model system for the theoretical modeling as well as for the depositions. The elemental composition, microstructure and mechanical properties of the coatings were characterized to relate the inherent properties to the experimentally achieved tribological response. As predicted by theory, TiAlC coatings were shown to provide self-lubrication on the atomic scale by giving low friction through a tribologically induced surface restructuring. It was shown possible to reduce the friction coefficient from 0.35 for TiC to 0.05 by addition of Al. Alloying with Al also proved to be a potent method in tailoring residual stresses from high and often detrimental levels to acceptable levels, with no significant reduction in either hardness or Young’s modulus. The effect of adding Al into TiC on the oxidation resistance was also explored. The critical temperature for onset of oxidation proved to increase with the Al-content from about 350°C for TiC to about 450°C for TiAlC with about 7 at% Al. A further increase in Al content did not change the onset temperature further but reduced the oxidation rate.

Keyword

Materials science
Tribology
low friction
PVD
sputtering
nanocomposite
Materialvetenskap

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view