SwePub
Sök i LIBRIS databas

  Extended search

L773:1552 4973 OR L773:1552 4981
 

Search: L773:1552 4973 OR L773:1552 4981 > Protein adsorption ...

Protein adsorption onto polyester surfaces : Is there a need for surface activation?

Atthoff, Björn (author)
Uppsala universitet,Polymerkemi
Hilborn, Jöns (author)
Uppsala universitet,Polymerkemi
 (creator_code:org_t)
2006
2007
English.
In: Journal of Biomedical Materials Research - Part B Applied Biomaterials. - : Wiley. - 1552-4973 .- 1552-4981. ; 80:1, s. 121-130
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Surface hydrolysis of polyester scaffolds is a convenient technique suggested to promote protein adsorption for improving cell attachment. We have, therefore, investigated the effect of hydrolysis of polyester surfaces for protein adsorption to clarify the conditions needed. Three polyesters, poly(ethylene terephthalate) (PET), poly(lactic acid) (PLA), and poly(glycolic acid) (PGA), were selected. Adsorption was investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and quartz crystal microbalance (QCM). Hydrolyzed PET adsorbed significantly more proteins than nonhydrolyzed. Degradable polymers adsorbed at higher rates when the polymers were hydrolyzed prior to adsorption, but the same amount as noehydrolyzed, suggesting spontaneous hydrolysis during the adsorption. XPS shows that hydrolysis prior to absorption for PET results in a surface nitrogen composition of ∼14%, similar to pure protein (16%). Nonhydrolyzed PET surfaces showed only ∼7% nitrogen, indicating protein layers thinner than ∼10 nm. Adsorption to PLA and PGA shows nitrogen contents of 14-15% in both cases. SEM revealed striking differences in morphology of the protein coating. Hydrolyzed or spontaneously hydrolyzable surfaces display a pronounced fibrous structure while nonhydrolyzed surfaces give smooth structures. In combination, the results show that surface hydrolysis increase adsorption rate, but not the amount of proteins on polyesters that degrades in vivo. Surface treatment of nondegradable polyester increases the total amount of proteins and induces the formation of fibrous protein structures. Post hydrolysis treatment by acetic acid, replacing the counter-ion to a proton, further enhances protein attachment. Finally, cell attachment experiments verifies that protein adsorption increase the cell attachment to polyester surfaces.

Subject headings

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Keyword

Poly(ethylene terephtalate)
Poly(glycolic acid)
Poly(lactic acid)
Protein adsorption
Surface modification
Surface treatment
Chemistry
Kemi

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Atthoff, Björn
Hilborn, Jöns
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Chemical Science ...
Articles in the publication
Journal of Biome ...
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view