SwePub
Sök i LIBRIS databas

  Extended search

L773:0142 2421 OR L773:1096 9918
 

Search: L773:0142 2421 OR L773:1096 9918 > Characterisation of...

Characterisation of a Non-Organofunctional Silane Film Deposited on Al, Zn and Al-43.4Zn-1.6Si Alloy-Coated Steel, Part I. Surface Characterization by ToF-SIMS

Bexell, Ulf (author)
Högskolan Dalarna,Materialvetenskap
Olsson, Mikael (author)
Högskolan Dalarna,Materialvetenskap
 (creator_code:org_t)
2001
2001
English.
In: Surface and Interface Analysis. - 0142-2421 .- 1096-9918. ; 31:3, s. 212-222
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The need to develop new environmentally friendly pretreatments in the surface engineering of metal substrates has become more and more important.This is mainly due to the toxic and carcinogenic properties of the chromium-based surface pretreatments frequently used in the industry. During the last decade, simple solution-dip silane-based pretreatments have emerged as promising candidates for the replacement of currently used pretreatments of metals. Recent investigations have shown that the performance of these newly developed pretreatments is strongly dependent on the chemical composition and structure of the silane film and consequently a lot of work, based on advanced surface analytical techniques, is needed in order to characterize these properties. In the present study, time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to characterize the structure of thin films of the non-organofunctional silane 1,2-bis(triethoxysilyl)ethane (BTSE) deposited on three different metal substrates, i.e. Al, Zn and Al-43.4Zn-1.6Si (AlZn) alloy-coated steel. Of special interest was an evaluation of the influence of substrate material on the structure and composition of the silane films. The results show that the BTSE silane forms a thin, evenly distributed film over the substrate surfaces and that the molecular structure of the silane film is independent of the type of metal substrate. Analysis of the molecular ions in the positive mode shows that the surface structure of the BTSE silane is very complex and that the BTSE condensates via one to three SiOSi bridges. Also, the results show that the BTSE silane is not fully hydrolysed using a hydrolysing time of 1 h. Finally, if an alcohol is used as a solvent for the BTSE there is a clear chemical interaction between the alcohol and the silane, resulting in an exchange of alkoxy groups between the alcohol and the silane. Copyright © 2001 John Wiley & Sons, Ltd.

Keyword

metal substrates; silane films; silane film structure; ToF-SIMS

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Bexell, Ulf
Olsson, Mikael
Articles in the publication
Surface and Inte ...
By the university
Högskolan Dalarna

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view