SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:gup.ub.gu.se/114450"
 

Search: id:"swepub:oai:gup.ub.gu.se/114450" > Comparison of diffe...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Buker, P (author)

Comparison of different stomatal conductance algorithms for ozone flux modelling

  • Article/chapterEnglish2005

Publisher, publication year, extent ...

  • 2005

Numbers

  • LIBRIS-ID:oai:gup.ub.gu.se/114450
  • https://gup.ub.gu.se/publication/114450URI

Supplementary language notes

  • Language:English

Part of subdatabase

Classification

  • Subject category:vet swepub-contenttype
  • Subject category:kon swepub-publicationtype

Notes

  • Two widely used algorithms for modelling stomatal conductance (gs) were compared in order to evaluate the approach leading to the most realistic predictions of stomatal fluxes to vegetated surfaces: a multiplicative algorithm initially developed by Jarvis (1976) and refined by Emberson et al. (2000) (DO3SE ) and a photosynthesis-based Ball&Berry-type algorithm developed by Nikolov et al. (1995) (LEAFC3). Both models were parameterised for several crop and tree species (wheat, grapevine, Scots pine, beech and birch) and have been applied to various datasets – with the main focus on wheat - representing different European regions (North, Central and South Europe). A sensitivity analysis has been carried out for both models to evaluate the dependence of gs on the meteorological parameters temperature, photosynthetic active radiation and vapour pressure deficit. Furthermore, in order to test whether a general species-specific parameterisation can account for differences in gs due to plants growing under different climatic conditions throughout Europe, the models have been re-parameterised for local meteorological conditions. A direct comparison of both models showed that the net photosynthetic-based model required more detailed meteorological (e.g. ambient CO2-concentration, dew-point temperature) and plant-physiological (e.g. Vcmax and Jmax) input parameters while not delivering a substantially higher R2 when comparing measured and modelled gs. The relative weakness of the multiplicative model lies in its dependence on the maximum stomatal conductance (gmax), whereas the photosynthesis-based model is not taking into account phenology-related changes in gs. Furthermore, the results show that an equally close relationship between gs and net photosynthetic rate throughout the entire growing season is questionable. We conclude that the multiplicative approach is favourable for calculating stomatal fluxes on a wider scale (e.g. within EMEP-deposition model), whereas the photosynthesis-based approach is a potential alternative for modelling fluxes on a local scale.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Emberson, L. (author)
  • Gerosa, G (author)
  • Jacobs, C (author)
  • Novak, K. (author)
  • Oksanen, E. (author)
  • Pleijel, Håkan,1958Gothenburg University,Göteborgs universitet,Institutionen för miljövetenskap och kulturvård,Department of Environmental Science and Conservation(Swepub:gu)xpleha (author)
  • Schaub, M. (author)
  • de la Torre, D (author)
  • Tuovinen, JP (author)
  • Uddling, Johan,1972Gothenburg University,Göteborgs universitet,Botaniska institutionen,Botanical Institute(Swepub:gu)xuddjo (author)
  • Ashmore, M. (author)
  • Göteborgs universitetInstitutionen för miljövetenskap och kulturvård (creator_code:org_t)

Related titles

  • In:UNECE – Workshop “Critical Levels of Ozone: Further applying and developing the flux-based concept”, Obergurgl, 15-19 November 2005

Internet link

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view